Harmonic and refined Rayleigh-Ritz for the polynomial eigenvalue problem

被引:22
作者
Hochstenbach, Michiel E. [1 ]
Sleijpen, Gerard L. G. [2 ]
机构
[1] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[2] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
关键词
polynomial eigenvalue problem; harmonic Rayleigh-Ritz; refined Rayleigh-Ritz; interior eigenvalues; Jacobi-Davidson; subspace extraction; subspace method; subspace expansion; Rayleigh-Ritz;
D O I
10.1002/nla.562
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
After reviewing the harmonic Rayleigh-Ritz approach for the standard and generalized eigenvalue problem, we discuss several extraction processes for subspace methods for the polynomial eigenvalue problem. We generalize the harmonic and refined Rayleigh-Ritz approaches which lead to new approaches to extract promising approximate eigenpairs from a search space. We give theoretical as well as numerical results of the methods. In addition, we study the convergence of the Jacobi-Davidson method for polynomial eigenvalue problems with exact and inexact linear solves and discuss several algorithmic details. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:35 / 54
页数:20
相关论文
共 19 条
[1]   Alternatives to the Rayleigh quotient for the quadratic eigenvalue problem [J].
Hochstenbach, ME ;
van der Vorst, HA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (02) :591-603
[2]   Two-sided and alternating Jacobi-Davidson [J].
Hochstenbach, ME ;
Sleijpen, GLG .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 358 :145-172
[3]  
HOCHSTENBACH ME, 2006, 0636 TU EINDH DEP MA
[4]   Numerical solution of quadratic eigenvalue problems with structure-preserving methods [J].
Hwang, TM ;
Lin, WW ;
Mehrmann, V .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (04) :1283-1302
[5]   Refined iterative algorithms based on Arnoldi's process for large unsymmetric eigenproblems [J].
Jia, ZX .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 259 :1-23
[6]  
Jia ZX, 2005, MATH COMPUT, V74, P1441, DOI 10.1090/S0025-5718-04-01684-9
[7]   AN ITERATION METHOD FOR THE SOLUTION OF THE EIGENVALUE PROBLEM OF LINEAR DIFFERENTIAL AND INTEGRAL OPERATORS [J].
LANCZOS, C .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1950, 45 (04) :255-282
[8]   APPROXIMATE SOLUTIONS AND EIGENVALUE BOUNDS FROM KRYLOV SUBSPACES [J].
PAIGE, CC ;
PARLETT, BN ;
VANDERVORST, HA .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1995, 2 (02) :115-133
[9]  
PARLETT B. N., 1980, The Symmetric Eigenvalue Problem
[10]  
Saad Y., 1992, NUMERICAL METHODS LA