Impact of Environmental Conditions on Secondary Organic Aerosol Production from Photosensitized Humic Acid

被引:16
作者
Fankhauser, Alison M. [1 ]
Bourque, Mary [1 ]
Almazan, John [1 ]
Marin, Daniela [1 ]
Fernandez, Lydia [1 ]
Hutheesing, Remy [1 ]
Ferdousi, Nahin [1 ]
Tsui, William G. [1 ]
McNeill, V. Faye [1 ]
机构
[1] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA
关键词
ATMOSPHERIC HULIS; AQUEOUS REACTIONS; CHAMBER; CHEMISTRY; PHENOLS; PATHWAY; ROS;
D O I
10.1021/acs.est.9b07485
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recent studies have shown the potential of the photosensitizer chemistry of humic acid, as a proxy for humic-like substances in atmospheric aerosols, to contribute to secondary organic aerosol mass. The mechanism requires particle-phase humic acid to absorb solar radiation and become photoexcited, then directly or indirectly oxidize a volatile organic compound (VOC), resulting in a lower volatility product in the particle phase. We performed experiments in a photochemical chamber, with aerosol-phase humic acid as the photosensitizer and limonene as the VOC. In the presence of 26 ppb limonene and under atmospherically relevant UV-visible irradiation levels, there is no significant change in particle diameter. Calculations show that SOA production via this pathway is highly sensitive to VOC precursor concentrations. Under the assumption that HULIS is equally or less reactive than the humic acid used in these experiments, the results suggest that the photosensitizer chemistry of HULIS in ambient atmospheric aerosols is unlikely to be a significant source of secondary organic aerosol mass.
引用
收藏
页码:5385 / 5390
页数:6
相关论文
共 38 条
  • [1] [Anonymous], 2006, ATMOS CHEM PHYS
  • [2] Organic aerosol formation photo-enhanced by the formation of secondary photosensitizers in aerosols
    Aregahegn, Kifle Z.
    Noziere, Barbara
    George, Christian
    [J]. FARADAY DISCUSSIONS, 2013, 165 : 123 - 134
  • [3] Particle-Phase Photosensitized Radical Production and Aerosol Aging
    Arroyo, Pablo Corral
    Bartels-Rausch, Thorsten
    Alpert, Peter A.
    Dumas, Stephane
    Perrier, Sebastien
    George, Christian
    Ammann, Markus
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (14) : 7680 - 7688
  • [4] Characterization of a Smog Chamber for Studying Formation and Physicochemical Properties of Secondary Organic Aerosol
    Bin Babar, Zaeem
    Park, Jun-Hyun
    Kang, Jia
    Lim, Ho-Jin
    [J]. AEROSOL AND AIR QUALITY RESEARCH, 2016, 16 (12) : 3102 - 3113
  • [5] A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation
    Carter, WPL
    Cocker, DR
    Fitz, DR
    Malkina, IL
    Bumiller, K
    Sauer, CG
    Pisano, JT
    Bufalino, C
    Song, C
    [J]. ATMOSPHERIC ENVIRONMENT, 2005, 39 (40) : 7768 - 7788
  • [6] de Gouw J. A., 2005, J GEOPHYS RES, V110
  • [7] Filipsson AF, 1998, WHO INT PROGRAMME CH
  • [8] Finlayson-Pitts B. J., 2000, CHEM UPPER LOWER ATM, DOI [10.1016/B978-012257060-5/ 50007-1., DOI 10.1016/B978-012257060-5/50007-1.]
  • [9] Atmospheric HULIS: How humic-like are they? A comprehensive and critical review
    Graber, ER
    Rudich, Y
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 : 729 - 753
  • [10] The formation, properties and impact of secondary organic aerosol: current and emerging issues
    Hallquist, M.
    Wenger, J. C.
    Baltensperger, U.
    Rudich, Y.
    Simpson, D.
    Claeys, M.
    Dommen, J.
    Donahue, N. M.
    George, C.
    Goldstein, A. H.
    Hamilton, J. F.
    Herrmann, H.
    Hoffmann, T.
    Iinuma, Y.
    Jang, M.
    Jenkin, M. E.
    Jimenez, J. L.
    Kiendler-Scharr, A.
    Maenhaut, W.
    McFiggans, G.
    Mentel, Th. F.
    Monod, A.
    Prevot, A. S. H.
    Seinfeld, J. H.
    Surratt, J. D.
    Szmigielski, R.
    Wildt, J.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (14) : 5155 - 5236