Vanadium redox flow batteries to reach greenhouse gas emissions targets in an off-grid configuration

被引:53
作者
Arbabzadeh, Maryam [1 ]
Johnson, Jeremiah X. [1 ]
De Kleine, Robert [1 ]
Keoleian, Gregory A. [1 ]
机构
[1] Univ Michigan, Ctr Sustainable Syst, Sch Nat Resources & Environm, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Energy storage; Vanadium redox flow battery; Life cycle assessment; Greenhouse gas emissions targets; Wind curtailment; WIND-DIESEL SYSTEM; ENERGY-STORAGE; NATURAL-GAS; SHALE GAS; OPTIMIZATION; PV; FEASIBILITY; COAL;
D O I
10.1016/j.apenergy.2015.02.005
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Energy storage may serve as a solution to the integration challenges of high penetrations of wind, helping to reduce curtailment, provide system balancing services, and reduce emissions. This study determines the minimum cost configuration of vanadium redox flow batteries (VRFB), wind turbines, and natural gas reciprocating engines in an off-grid model. A life cycle assessment (LCA) model is developed to determine the system configuration needed to achieve a variety of CO2-eq emissions targets. The relationship between total system costs and life cycle emissions are used to optimize the generation mixes to achieve emissions targets at the least cost and determine when VRFBs are preferable over wind curtailment. Different greenhouse gas (GHG) emissions targets are defined for the off-grid system and the minimum cost resource configuration is determined to meet those targets. This approach determines when the use of VRFBs is more cost effective than wind curtailment in reaching GHG emissions targets. The research demonstrates that while incorporating energy storage consistently reduces life cycle carbon emissions, it is not cost effective to reduce curtailment except under very low emission targets (190 g of CO2-eq/kW h and less for the examined system). This suggests that "overbuilding" wind is a more viable option to reduce life cycle emissions for all but the most ambitious carbon mitigation targets. The findings show that adding VRFB as energy storage could be economically preferable only when wind curtailment exceeds 66% for the examined system. The results were most sensitive to VRFB costs, natural gas upstream emissions (e.g. methane leakage), and wind capital cost. (c) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:397 / 408
页数:12
相关论文
共 49 条
[1]   Simulation and size optimization of a pumped-storage power plant for the recovery of wind-farms rejected energy [J].
Anagnostopoulos, J. S. ;
Papantonis, D. E. .
RENEWABLE ENERGY, 2008, 33 (07) :1685-1694
[2]  
[Anonymous], EM GREENH GAS US 200
[3]  
Bondesson A, 2010, THESIS ROYAL I TECHN
[4]   Optimization of pumped storage capacity in an isolated power system with large renewable penetration [J].
Brown, Paul D. ;
Pecas Lopes, J. A. ;
Matos, Manuel A. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2008, 23 (02) :523-531
[5]   Life-Cycle Greenhouse Gas Emissions of Shale Gas, Natural Gas, Coal, and Petroleum [J].
Burnham, Andrew ;
Han, Jeongwoo ;
Clark, Corrie E. ;
Wang, Michael ;
Dunn, Jennifer B. ;
Palou-Rivera, Ignasi .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (02) :619-627
[6]  
Caterpillar, G3616LW GAS PETR ENG
[7]   Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems [J].
Denholm, P ;
Kulcinski, GL .
ENERGY CONVERSION AND MANAGEMENT, 2004, 45 (13-14) :2153-2172
[8]   Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies [J].
Denholm, Paul ;
Margolis, Robert M. .
ENERGY POLICY, 2007, 35 (09) :4424-4433
[9]   Grid flexibility and storage required to achieve very high penetration of variable renewable electricity [J].
Denholm, Paul ;
Hand, Maureen .
ENERGY POLICY, 2011, 39 (03) :1817-1830
[10]  
Electric Power Research Institute, 2014, EN STOR GRID CONN WI