Wi-ATCN: Attentional Temporal Convolutional Network for Human Action Prediction Using WiFi Channel State Information

被引:18
作者
Zhu, Aichun [1 ]
Tang, Zhonghua [1 ]
Wang, Zixuan [1 ]
Zhou, Yue [1 ]
Chen, Shichao [1 ]
Hu, Fangqiang [1 ]
Li, Yifeng [1 ]
机构
[1] Nanjing Tech Univ, Nanjing 211800, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Feature extraction; Hidden Markov models; Antennas; Wireless fidelity; Convolution; Data mining; Time-domain analysis; Action prediction; wifi; channel state information; temporal convolutional network; self-attention mechanism; ACTIVITY RECOGNITION;
D O I
10.1109/JSTSP.2022.3163858
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the rapid development of wireless technologies, many researchers use WiFi signals for human action recognition. Most of the previous methods are based on traditional machine learning algorithms, requiring researchers to manually extract time-domain or frequency-domain features from the obtained WiFi Channel State Information (CSI), but they can not effectively represent the CSI continuous features of human actions. In this paper, we propose an attentional temporal convolutional network (ATCN) for action recognition using CSI. By combining causal convolution and dilated convolution, the proposed ATCN guarantees no CSI features leakage from the future to the past and effectively expands the receptive field to maintain a longer memory size. Meanwhile, the self-attention mechanism is leveraged to assign more weights for the CSI data that is representative of human actions. To better verify and evaluate our proposed model, we build the Njtech-CSI-Action data set and make comparative experiments. The experimental results demonstrate that our Wi-ATCN outperforms previous methods and achieves the state-of-the-art performance.
引用
收藏
页码:804 / 816
页数:13
相关论文
共 40 条
[1]  
Abdelnasser H, 2015, IEEE CONF COMPUT, P17, DOI 10.1109/INFCOMW.2015.7179321
[2]   POSTER: WLAN Device Fingerprinting using Channel State Information (CSI) [J].
Adamsky, Florian ;
Retunskaia, Tatiana ;
Schiffner, Stefan ;
Kobel, Christian ;
Engel, Thomas .
WISEC'18: PROCEEDINGS OF THE 11TH ACM CONFERENCE ON SECURITY & PRIVACY IN WIRELESS AND MOBILE NETWORKS, 2018, :277-278
[3]   Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems [J].
Alkhateeb, Ahmed ;
El Ayach, Omar ;
Leus, Geert ;
Heath, Robert W., Jr. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (05) :831-846
[4]   OFDM for Optical Communications [J].
Armstrong, Jean .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2009, 27 (1-4) :189-204
[5]  
Bai SJ, 2018, Arxiv, DOI [arXiv:1803.01271, DOI 10.48550/ARXIV.1803.01271, 10.48550/arXiv.1803.01271]
[6]   Curve-Like Structure Extraction Using Minimal Path Propagation With Backtracking [J].
Chen, Yang ;
Zhang, Yudong ;
Yang, Jian ;
Cao, Qing ;
Yang, Guanyu ;
Chen, Jian ;
Shu, Huazhong ;
Luo, Limin ;
Coatrieux, Jean-Louis ;
Feng, Qianjing .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (02) :988-1003
[7]   WiFi CSI Based Passive Human Activity Recognition Using Attention Based BLSTM [J].
Chen, Zhenghua ;
Zhang, Le ;
Jiang, Chaoyang ;
Cao, Zhiguang ;
Cui, Wei .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2019, 18 (11) :2714-2724
[8]   Towards CSI-based diversity activity recognition via LSTM-CNN encoder-decoder neural network [J].
Guo, Linlin ;
Zhang, Hang ;
Wang, Chao ;
Guo, Weiyu ;
Diao, Guangqiang ;
Lu, Bingxian ;
Lin, Chuang ;
Wang, Lei .
NEUROCOMPUTING, 2021, 444 (444) :260-273
[9]   Tool Release: Gathering 802.11n Traces with Channel State Information [J].
Halperin, Daniel ;
Hu, Wenjun ;
Sheth, Anmol ;
Wetherall, David .
ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2011, 41 (01) :53-53
[10]   An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems [J].
Heath, Robert W., Jr. ;
Gonzalez-Prelcic, Nuria ;
Rangan, Sundeep ;
Roh, Wonil ;
Sayeed, Akbar M. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (03) :436-453