Drug delivery, biodistribution and anti-EGFR activity: theragnostic nanoparticles for simultaneous in vivo delivery of tyrosine kinase inhibitors and kinase activity biosensors

被引:8
作者
Bofinger, Robin [1 ,6 ]
Weitsman, Gregory [2 ]
Evans, Rachel [2 ,3 ]
Glaser, Matthias [1 ,4 ]
Sander, Kerstin [1 ,4 ]
Allan, Helen [1 ]
Hochhauser, Daniel [3 ]
Kalber, Tammy L. [5 ]
Arstad, Erik [1 ,4 ]
Hailes, Helen C. [1 ]
Ng, Tony [2 ,3 ]
Tabor, Alethea B. [1 ]
机构
[1] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England
[2] Kings Coll London, Sch Canc & Pharmaceut Sci, London SE1 1UL, England
[3] UCL, UCL Canc Inst, Paul OGorman Bldg, London WC1E 6DD, England
[4] Ctr Radiopharmaceut Chem, Kathleen Lonsdale Bldg,5 Gower Pl, London WC1E 6BS, England
[5] UCL, Ctr Adv Biomed Imaging, Paul OGorman Bldg, London WC1E 6DD, England
[6] French Agcy Food Environm & Occupat Hlth & Safety, ANSES, Fougeres Lab, Residues & Contaminants Anal Unit, 10B Rue Claude Bourgelat, F-35306 Fougeres, France
基金
英国工程与自然科学研究理事会;
关键词
GROWTH-FACTOR RECEPTOR; BRANCHED CATIONIC PEPTIDES; COLORECTAL-CANCER; HIGHLY EFFICIENT; TARGETED DELIVERY; PHASE-II; SIRNA; LIPOSOME; LIGAND; TRANSFECTION;
D O I
10.1039/d1nr02770k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In vivo delivery of small molecule therapeutics to cancer cells, assessment of the selectivity of administration, and measuring the efficacity of the drug in question at the molecule level, are important ongoing challenges in developing new classes of cancer chemotherapeutics. One approach that has the potential to provide targeted delivery, tracking of biodistribution and readout of efficacy, is to use multimodal theragnostic nanoparticles to deliver the small molecule therapeutic. In this paper, we report the development of targeted theragnostic lipid/peptide/DNA lipopolyplexes. These simultaneously deliver an inhibitor of the EGFR tyrosine kinase, and plasmid DNA coding for a Crk-based biosensor, Picchu-X, which when expressed in the target cells can be used to quantify the inhibition of EGFR in vivo in a mouse colorectal cancer xenograft model. Reversible bioconjugation of a known analogue of the tyrosine kinase inhibitor Mo-IPQA to a cationic peptide, and co-formulation with peptides containing both EGFR-binding and cationic sequences, allowed for good levels of inhibitor encapsulation with targeted delivery to LIM1215 colon cancer cells. Furthermore, high levels of expression of the Picchu-X biosensor in the LIM1215 cells in vivo allowed us to demonstrate, using fluorescence lifetime microscopy (FLIM)-based biosensing, that EGFR activity can be successfully suppressed by the tyrosine kinase inhibitor, released from the lipopolyplexes. Finally, we measured the biodistribution of lipopolyplexes containing I-125-labelled inhibitors and were able to demonstrate that the lipopolyplexes gave significantly higher drug delivery to the tumors compared with free drug.
引用
收藏
页码:18520 / 18535
页数:16
相关论文
共 75 条
[1]   Recent Progress in Bioconjugation Strategies for Liposome-Mediated Drug Delivery [J].
Almeida, Bethany ;
Nag, Okhil K. ;
Rogers, Katherine E. ;
Delehanty, James B. .
MOLECULES, 2020, 25 (23)
[2]   Nucleic acid combinations: A new frontier for cancer treatment [J].
Bahadur, Remant ;
Thapa, Bindu ;
Valencia-Serna, Juliana ;
Aliabadi, Hamidreza Montezari ;
Uludag, Hasan .
JOURNAL OF CONTROLLED RELEASE, 2017, 256 :153-169
[3]   The Gray Institute "open' high-content, fluorescence lifetime microscopes [J].
Barber, P. R. ;
Tullis, I. D. C. ;
Pierce, G. P. ;
Newman, R. G. ;
Prentice, J. ;
Rowley, M. I. ;
Matthews, D. R. ;
Ameer-Beg, S. M. ;
Vojnovic, B. .
JOURNAL OF MICROSCOPY, 2013, 251 (02) :154-167
[4]   Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM [J].
Barber, PR ;
Ameer-Beg, SM ;
Gilbey, J ;
Edens, RJ ;
Ezike, I ;
Vojnovic, B .
MULTIPHOTON MICROSCOPY IN THE BIOMEDICAL SCIENCES V, 2005, 5700 :171-181
[5]   Fluorine-labeled Dasatinib Nanoformulations as Targeted Molecular Imaging Probes in a PDGFB-driven Murine Glioblastoma Model [J].
Benezra, Miriam ;
Hambardzumyan, Dolores ;
Penate-Medina, Oula ;
Veach, Darren R. ;
Pillarsetty, Nagavarakishore ;
Smith-Jones, Peter ;
Phillips, Evan ;
Ozawa, Tatsuya ;
Zanzonico, Pat B. ;
Longo, Valerie ;
Holland, Eric C. ;
Larson, Steven M. ;
Bradbury, Michelle S. .
NEOPLASIA, 2012, 14 (12) :1132-+
[6]  
BERNATOWICZ MS, 1986, INT J PEPT PROT RES, V28, P107
[7]   Development of lipopolyplexes for gene delivery: A comparison of the effects of differing modes of targeting peptide display on the structure and transfection activities of lipopolyplexes [J].
Bofinger, Robin ;
Zaw-Thin, May ;
Mitchell, Nicholas J. ;
Patrick, P. Stephen ;
Stowe, Cassandra ;
Gomez-Ramirez, Ana ;
Hailes, Helen C. ;
Kalber, Tammy L. ;
Tabor, Alethea B. .
JOURNAL OF PEPTIDE SCIENCE, 2018, 24 (12)
[8]   Glutathione regulates telomerase activity in 3T3 fibroblasts [J].
Borrás, C ;
Esteve, JM ;
Viña, JR ;
Sastre, J ;
Viña, J ;
Pallardó, FV .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (33) :34332-34335
[9]   Liposomes as nanomedical devices [J].
Bozzuto, Giuseppina ;
Molinari, Agnese .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2015, 10 :975-999
[10]   TBCRC 001: Randomized Phase II Study of Cetuximab in Combination With Carboplatin in Stage IV Triple-Negative Breast Cancer [J].
Carey, Lisa A. ;
Rugo, Hope S. ;
Marcom, P. Kelly ;
Mayer, Erica L. ;
Esteva, Francisco J. ;
Ma, Cynthia X. ;
Liu, Minetta C. ;
Storniolo, Anna Maria ;
Rimawi, Mothaffar F. ;
Forero-Torres, Andres ;
Wolff, Antonio C. ;
Hobday, Timothy J. ;
Ivanova, Anastasia ;
Chiu, Wing-Keung ;
Ferraro, Madlyn ;
Burrows, Emily ;
Bernard, Philip S. ;
Hoadley, Katherine A. ;
Perou, Charles M. ;
Winer, Eric P. .
JOURNAL OF CLINICAL ONCOLOGY, 2012, 30 (21) :2615-2623