Conducting polymer ink for flexible and printable micro-supercapacitors with greatly-enhanced rate capability

被引:40
作者
Chu, Xiang [1 ]
Zhu, Zehao [1 ]
Huang, Haichao [1 ]
Xie, Yanting [1 ]
Xu, Zhong [1 ]
Wang, Yihan [1 ]
Yan, Cheng [1 ]
Jin, Long [1 ]
Wang, Yuchen [1 ]
Zhang, Haitao [1 ]
Yang, Weiqing [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
Polyaniline ink; High rate capability; Printable device; Electrochemical energy storage; Micro-supercapacitor; SOLID-STATE SUPERCAPACITORS; PSEUDOCAPACITIVE ELECTRODES; POLYANILINE; NETWORKS; INPLANE;
D O I
10.1016/j.jpowsour.2021.230555
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Conducting polymer ink holds great promise for wearable, flexible, and printable high-power-density microsupercapacitors (MSCs) but chronically suffers from the poor rate capability ascribing to naturally electron-blocked transferring. Herein, we devise an air-stable, easy-fabricating and rapid electron-transferring polyaniline ink by embedding conductive carboxylic multi-walled carbon nanotubes (C-MWCNTs) networks into polyaniline nanosheets. Due to the optimized electron-transferring kinetics, the rate capability of polyaniline ink is significantly increased by 73.7%. Additionally, the large-scale printable MSCs based on this ink deliver remarkable energy density of 2.6 mWh cm(-3), large areal capacitance of 45.4 mF cm(-2) and excellent mechanics-electrochemistry stability with 84.6% capacitance retention against 1000 consecutive bending cycles. Evidently, this work provides the polyaniline ink for large-scale, printable, and flexible MSCs, which can underpin the next generation printed electronics in the approaching era of Internet of Things.
引用
收藏
页数:9
相关论文
共 43 条
[1]   Turning Trash into Treasure: Additive Free MXene Sediment Inks for Screen-Printed Micro-Supercapacitors [J].
Abdolhosseinzadeh, Sina ;
Schneider, Rene ;
Verma, Anand ;
Heier, Jakob ;
Nuesch, Frank ;
Zhang, Chuanfang .
ADVANCED MATERIALS, 2020, 32 (17)
[2]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
[3]  
Chen J, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.138, 10.1038/NENERGY.2016.138]
[4]  
Chu X., SMALL
[5]   An ultrathin robust polymer membrane for wearable solid-state electrochemical energy storage [J].
Chu, Xiang ;
Zhao, Xun ;
Zhou, Yihao ;
Wang, Yihan ;
Han, Xueling ;
Zhou, Yilin ;
Ma, Jingxin ;
Wang, Zixing ;
Huang, Haichao ;
Xu, Zhong ;
Yan, Cheng ;
Zhang, Haitao ;
Yang, Weiqing ;
Chen, Jun .
NANO ENERGY, 2020, 76
[6]   Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors [J].
Chu, Xiang ;
Huang, Haichao ;
Zhang, Haitao ;
Zhang, Hepeng ;
Gu, Bingni ;
Su, Hai ;
Liu, Fangyan ;
Han, Yu ;
Wang, Zixing ;
Chen, Ningjun ;
Yan, Cheng ;
Deng, Wen ;
Deng, Weili ;
Yang, Weiqing .
ELECTROCHIMICA ACTA, 2019, 301 :136-144
[7]   A novel stretchable supercapacitor electrode with high linear capacitance [J].
Chu, Xiang ;
Zhang, Haitao ;
Su, Hai ;
Liu, Fangyan ;
Gu, Bingni ;
Huang, Haichao ;
Zhang, Hepeng ;
Deng, Wen ;
Zheng, Xiaotong ;
Yang, Weiqing .
CHEMICAL ENGINEERING JOURNAL, 2018, 349 :168-175
[8]   Towards flexible solid-state supercapacitors for smart and wearable electronics [J].
Dubal, Deepak P. ;
Chodankar, Nilesh R. ;
Kim, Do-Heyoung ;
Gomez-Romero, Pedro .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (06) :2065-2129
[9]   Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons [J].
Ge, Dengteng ;
Yang, Lili ;
Fan, Lei ;
Zhang, Chuanfang ;
Xiao, Xu ;
Gogotsi, Yury ;
Yang, Shu .
NANO ENERGY, 2015, 11 :568-578
[10]   Solar-powering the Internet of Things [J].
Haight, Richard ;
Haensch, Wilfried ;
Friedman, Daniel .
SCIENCE, 2016, 353 (6295) :124-125