Data-Driven Probabilistic Optimal Power Flow With Nonparametric Bayesian Modeling and Inference

被引:39
|
作者
Sun, Weigao [1 ,2 ,3 ]
Zamani, Mohsen [4 ]
Hesamzadeh, Mohammad Reza [5 ]
Zhang, Hai-Tao [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Key Lab Imaging Proc & Intelligence Control, Wuhan 430074, Peoples R China
[4] Univ Newcastle, Sch Elect Engn & Comp, Callaghan, NSW 2308, Australia
[5] KTH Royal Inst Technol, Dept Elect Power & Energy Syst, S-10044 Stockholm, Sweden
基金
中国国家自然科学基金;
关键词
Uncertainty; Power systems; Input variables; Correlation; Estimation; Wind power generation; Probabilistic logic; Probabilistic optimal power flow; Dirichlet process mixture model; Gaussian mixture model; wind uncertainty; SYSTEMS; INTEGRATION; RISK;
D O I
10.1109/TSG.2019.2931160
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a data-driven algorithm for probabilistic optimal power flow (POPF). In particular, we develop a nonparametric Bayesian framework based on the Dirichlet process mixture model (DPMM) and variational Bayesian inference (VBI) to establish a probabilistic model for capturing the uncertainties involved with wind generation and load power in power systems. In the proposed setup, the number of components in the mixture model can be automatically and analytically obtained from the consistently updated data. Moreover, we develop an efficient quasi-Monte Carlo sampling method to draw samples from the obtained DPMM, then propose the dynamic data-driven POPF algorithm. Performance of uncertainty modeling framework on publicly available datasets is examined by extensive numerical simulations. Furthermore, the proposed POPF algorithm is verified on multiple IEEE benchmark power systems. Numerical results show the feasibility and superiority of the proposed DPMM-based POPF algorithm for better informed decision-making in power systems with high level of uncertainties.
引用
收藏
页码:1077 / 1090
页数:14
相关论文
共 50 条
  • [1] Data-Driven Nonparametric Probabilistic Optimal Power Flow: An Integrated Probabilistic Forecasting and Analysis Methodology
    Li, Yunyi
    Wan, Can
    Cao, Zhaojing
    Song, Yonghua
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (06) : 5820 - 5833
  • [2] Data-Driven Chance-Constrained Optimal Gas-Power Flow Calculation: A Bayesian Nonparametric Approach
    Wang, Jingyao
    Wang, Cheng
    Liang, Yile
    Bi, Tianshu
    Shafie-khah, Miadreza
    Catalao, Joao P. S.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (05) : 4683 - 4698
  • [3] Nonparametric Probabilistic Optimal Power Flow
    Li, Yunyi
    Wan, Can
    Chen, Dawei
    Song, Yonghua
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (04) : 2758 - 2770
  • [4] A New Data-Driven Quasi-Monte Carlo for Probabilistic Optimal Power Flow
    Krishna, Attoti Bharath
    Abhyankar, Abhijit R.
    2022 22ND NATIONAL POWER SYSTEMS CONFERENCE, NPSC, 2022,
  • [5] Bayesian operator inference for data-driven reduced-order modeling
    Guo, Mengwu
    McQuarrie, Shane A.
    Willcox, Karen E.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 402
  • [6] Data-driven power control for state estimation: A Bayesian inference approach
    Wu, Junfeng
    Li, Yuzhe
    Quevedo, Daniel E.
    Lau, Vincent
    Shi, Ling
    AUTOMATICA, 2015, 54 : 332 - 339
  • [7] Variational Bayesian probabilistic modeling framework for data-driven distributed process monitoring
    Jiang, Jiashi
    Jiang, Qingchao
    CONTROL ENGINEERING PRACTICE, 2021, 110
  • [8] Stochastic AC optimal power flow: A data-driven approach
    Mezghani, Ilyes
    Misra, Sidhant
    Deka, Deepjyoti
    ELECTRIC POWER SYSTEMS RESEARCH, 2020, 189
  • [9] Distributed Optimal Power Flow with Data-Driven Sensitivity Computation
    Sen Sarma, Debopama
    Cupelli, Lisette
    Ponci, Ferdinanda
    Monti, Antonello
    2021 IEEE MADRID POWERTECH, 2021,
  • [10] Data-Driven Bayesian Nonparametric Wasserstein Distributionally Robust Optimization
    Ning, Chao
    Ma, Xutao
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3597 - 3602