Mom technology and volumes of hyperbolic 3-manifolds

被引:15
作者
Gabai, David [1 ]
Meyerhoff, Robert [2 ]
Milley, Peter
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
Mom technology; hyperbolic; 3-manifolds; volume; MANIFOLDS;
D O I
10.4171/CMH/221
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces Mom technology to understand low volume hyperbolic 3-manifolds; it is used in [GMM3] and [M1] to show that the Weeks manifold is the unique closed orientable hyperbolic 3-manifold of least volume. Here we enumerate the hyperbolic Mom-n manifolds for n <= 3, offer a conjectural enumeration when n = 4, and establish important technical results about embedding hyperbolic Mom-n manifolds into hyperbolic 3-manifolds.
引用
收藏
页码:145 / 188
页数:44
相关论文
共 19 条
[1]  
Gabai D, 2001, J DIFFER GEOM, V57, P23
[2]   MINIMUM VOLUME CUSPED HYPERBOLIC THREE-MANIFOLDS [J].
Gabai, David ;
Meyerhoff, Robert ;
Milley, Peter .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 22 (04) :1157-1215
[3]  
Gehring FW, 1998, J DIFFER GEOM, V49, P411
[4]   THEORIE DER NORMALFLACHEN - EIN ISOTOPIEKRITERIUM FUR DEN KREISKNOTEN [J].
HAKEN, W .
ACTA MATHEMATICA, 1961, 105 (3-4) :245-375
[5]  
JACO W., 1980, CBMS REGIONAL C SER, V43
[6]  
Johannson K., 1979, HOMOTOPY EQUIVALENCE
[7]  
Kojima S, 1998, J DIFFER GEOM, V49, P469
[8]  
LACKENBY M, 2008, ARXIV08081176V1MATHG
[9]  
Matveev S., 2003, ALGORITHMS COMPUT MA, V9, pxii
[10]  
Matveev S. V., 1995, SB MATH, V186, p[69, 695], DOI 10.1070/SM1995v186n05ABEH000037