Potential of the acoustic micromanipulation technologies for biomedical research

被引:22
作者
Akkoyun, Fatih [1 ]
Gucluer, Sinan [1 ]
Ozcelik, Adem [1 ]
机构
[1] Adnan Menderes Univ, Dept Mech Engn, Aydin, Turkey
关键词
SINGLE CELLS; ROTATIONAL MANIPULATION; RADIATION FORCE; ACOUSTOFLUIDICS; TWEEZERS; PARTICLE; SEPARATION; FLUID; ULTRASOUND; HISTORY;
D O I
10.1063/5.0073596
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Acoustic micromanipulation technologies are a set of versatile tools enabling unparalleled micromanipulation capabilities. Several characteristics put the acoustic micromanipulation technologies ahead of most of the other tweezing methods. For example, acoustic tweezers can be adapted as non-invasive platforms to handle single cells gently or as probes to stimulate or damage tissues. Besides, the nature of the interactions of acoustic waves with solids and liquids eliminates labeling requirements. Considering the importance of highly functional tools in biomedical research for empowering important discoveries, acoustic micromanipulation can be valuable for researchers in biology and medicine. Herein, we discuss the potential of acoustic micromanipulation technologies from technical and application points of view in biomedical research.
引用
收藏
页数:10
相关论文
共 109 条
[21]   Controlling sound with acoustic metamaterials [J].
Cummer, Steven A. ;
Christensen, Johan ;
Alu, Andrea .
NATURE REVIEWS MATERIALS, 2016, 1 (03)
[22]   Recent Advances in Magnetic Tweezers [J].
De Vlaminck, Iwijn ;
Dekker, Cees .
ANNUAL REVIEW OF BIOPHYSICS, VOL 41, 2012, 41 :453-472
[23]   Frequency effects on the scale and behavior of acoustic streaming [J].
Dentry, Michael B. ;
Yeo, Leslie Y. ;
Friend, James R. .
PHYSICAL REVIEW E, 2014, 89 (01)
[24]   Continuous flow actuation between external reservoirs in small-scale devices driven by surface acoustic waves [J].
Dentry, Michael B. ;
Friend, James R. ;
Yeo, Leslie Y. .
LAB ON A CHIP, 2014, 14 (04) :750-758
[25]   Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration [J].
Destgeer, Ghulam ;
Cho, Hyunjun ;
Ha, Byung Hang ;
Jung, Jin Ho ;
Park, Jinsoo ;
Sung, Hyung Jin .
LAB ON A CHIP, 2016, 16 (04) :660-667
[26]   Surface acoustic wave microfluidics [J].
Ding, Xiaoyun ;
Li, Peng ;
Lin, Sz-Chin Steven ;
Stratton, Zackary S. ;
Nama, Nitesh ;
Guo, Feng ;
Slotcavage, Daniel ;
Mao, Xiaole ;
Shi, Jinjie ;
Costanzo, Francesco ;
Huang, Tony Jun .
LAB ON A CHIP, 2013, 13 (18) :3626-3649
[27]   On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves [J].
Ding, Xiaoyun ;
Lin, Sz-Chin Steven ;
Kiraly, Brian ;
Yue, Hongjun ;
Li, Sixing ;
Chiang, I-Kao ;
Shi, Jinjie ;
Benkovic, Stephen J. ;
Huang, Tony Jun .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (28) :11105-11109
[28]   Theory of acoustic radiation pressure for actual fluids [J].
Doinikov, AA .
PHYSICAL REVIEW E, 1996, 54 (06) :6297-6303
[29]   Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid .1. General formula [J].
Doinikov, AA .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 101 (02) :713-721
[30]   Acoustophoretic printing [J].
Foresti, Daniele ;
Kroll, Katharina T. ;
Amissah, Robert ;
Sillani, Francesco ;
Homan, Kimberly A. ;
Poulikakos, Dimos ;
Lewis, Jennifer A. .
SCIENCE ADVANCES, 2018, 4 (08)