Enhancing Silicon Nanocrystal Photoluminescence through Temperature and Microstructure

被引:19
作者
Brown, Samuel L. [1 ]
Vogel, Dayton J. [2 ]
Miller, Joseph B. [1 ,6 ]
Inerbaev, Talgat M. [3 ,4 ]
Anthony, Rebecca J. [5 ,7 ]
Kortshagen, Uwe R. [5 ]
Kilin, Dmitri S. [1 ]
Hobbie, Erik K. [1 ]
机构
[1] North Dakota State Univ, Fargo, ND 58108 USA
[2] Univ South Dakota, Vermillion, SD 57069 USA
[3] Eurasian Natl Univ, Astana 010008, Kazakhstan
[4] Natl Univ Sci & Technol MISIS, Moscow 119049, Russia
[5] Univ Minnesota, Minneapolis, MN 55455 USA
[6] Rice Univ, Houston, TX 77005 USA
[7] Michigan State Univ, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
AUGMENTED-WAVE METHOD; QUANTUM DOTS; DEPENDENT PHOTOLUMINESCENCE; CAENORHABDITIS-ELEGANS; OPTICAL-PROPERTIES; SIZE; NANOPARTICLES; LUMINESCENCE; ENSEMBLE; ULTRACENTRIFUGATION;
D O I
10.1021/acs.jpcc.6b05837
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Routes to enhancing the photoluminescence (PL) of colloidal silicon nanocrystals (SiNCs) typically focus On changes in surface chemistry and the associated improvements in quantum yield. Here, we report a new more indirect approach that instead exploits the structure of the host matrix. Specifically, we demonstrate that changes in microstructure associated with a thermotropic phase transition in unbound ligand can increase the excitation fluence through scattering, yielding dramatic improvements in PL intensity without any discernible changes in fluorescence lifetime or quantum yield. Using size-purified plasma synthesized SiNCs prepared as solid and liquid samples, we use experiment and computation to examine both intrinsic size-resolved differences in the temperature-dependent PL and an anomalous contribution linked to matrix microstructure. Beyond revealing a potential new route to improved PL intensity, our results further clarity the role of surface states and the challenges that they present.
引用
收藏
页码:18909 / 18916
页数:8
相关论文
共 63 条
[1]  
[Anonymous], 2016, Jmol: an open-source Java viewer for chemical structures in 3D
[2]   Routes to Achieving High Quantum Yield Luminescence from Gas-Phase-Produced Silicon Nanocrystals [J].
Anthony, Rebecca J. ;
Rowe, David J. ;
Stein, Matthias ;
Yang, Jihua ;
Kortshagen, Uwe .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (21) :4042-4046
[3]   Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles [J].
Belomoin, G ;
Therrien, J ;
Nayfeh, M .
APPLIED PHYSICS LETTERS, 2000, 77 (06) :779-781
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Toxicity of Quantum Dots and Cadmium Salt to Caenorhabditis elegans after Multigenerational Exposure [J].
Contreras, Elizabeth Q. ;
Cho, Minjung ;
Zhu, Huiguang ;
Puppala, Hema L. ;
Escalera, Gabriela ;
Zhong, Weiwei ;
Colvin, Vicki L. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (02) :1148-1154
[6]   Size vs Surface: Tuning the Photoluminescence of Freestanding Silicon Nanocrystals Across the Visible Spectrum via Surface Groups [J].
Dasog, Mita ;
De los Reyes, Glenda B. ;
Titova, Lyubov V. ;
Hegmann, Frank A. ;
Veinot, Jonathan G. C. .
ACS NANO, 2014, 8 (09) :9636-9648
[7]   Silicon quantum dots: surface matters [J].
Dohnalova, K. ;
Gregorkiewicz, T. ;
Kusova, K. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (17)
[8]   Surface brightens up Si quantum dots: direct bandgap-like size-tunable emission [J].
Dohnalova, Katerina ;
Poddubny, Alexander N. ;
Prokofiev, Alexei A. ;
de Boer, Wieteke D. A. M. ;
Umesh, Chinnaswamy P. ;
Paulusse, Jos M. J. ;
Zuilhof, Han ;
Gregorkiewicz, Tom .
LIGHT-SCIENCE & APPLICATIONS, 2013, 2 :e47-e47
[9]   Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots [J].
Donega, C. de Mello ;
Bode, M. ;
Meijerink, A. .
PHYSICAL REVIEW B, 2006, 74 (08)
[10]   Biocompatible luminescent silicon quantum dots for imaging of cancer cells [J].
Erogbogbo, Folarin ;
Yong, Ken-Tye ;
Roy, Indrajit ;
Xu, GaiXia ;
Prasad, Paras N. ;
Swihart, Mark T. .
ACS NANO, 2008, 2 (05) :873-878