共 50 条
A Review of Recent Developments in Nanocellulose-Based Conductive Hydrogels
被引:9
|作者:
Yousefi, Iman
[1
]
Zhong, Wen
[1
]
机构:
[1] Univ Manitoba, Dept Biosyst Engn, Winnipeg, MB R3T 2N2, Canada
关键词:
Nanocellulose;
conductive hydrogels;
cellulose nanofibers;
cellulose nanocrystals;
3D printing;
bacterial cellulose;
MICROFIBRILLATED CELLULOSE;
BACTERIAL CELLULOSE;
3D;
POLYPYRROLE;
POLYANILINE;
COMPOSITES;
NANOCRYSTALS;
FUNDAMENTALS;
NANOFIBRILS;
MATRIX;
D O I:
10.2174/1573413716999201127111627
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
Nanocellulose has attracted much research interest owing to its biocompatibility, low density, environmental sustainability, flexibility, ease of surface modification, excellent mechanical properties and ultrahigh surface areas. Recently, lots of research efforts have focused on nanocellulose-based conductive hydrogels for different practical applications, including electronic devices, energy storage, sensors, composites, tissue engineering and other biomedical applications. A wide variety of conductive hydrogels have been developed from nanocellulose, which can be in the form of cellulose nanofibers (CNF), cellulose nanocrystals (CNC) or bacterial cellulose (BC). This review presents the recent progress in the development of nanocellulose-based conductive hydrogels, their advanced functions, including 3D printability, self-healing capacity and high mechanical performances, as well as applications of the conductive nanocellulose hydrogels.
引用
收藏
页码:620 / 633
页数:14
相关论文