Language invariance and spectrum exchangeability in inductive logic

被引:0
作者
Landes, Juergen [1 ]
Paris, Jeff [1 ]
Vencovska, Alena [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
来源
SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS | 2007年 / 4724卷
基金
英国工程与自然科学研究理事会;
关键词
uncertain reasoning; inductive logic; probability logic; spectrum exchangeability; language invariance;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A sufficient condition, in terms of a de Finetti style representation, is given for a probability function in Inductive Logic (with relations of all arities) satisfying Spectrum Exchangeability to additionally satisfy Language Invariance. This condition is shown to also be necessary in the case of homogeneous probability functions. In contrast it is proved that (purely) t-heterogeneous probability functions can never be members of a language invariant family satisfying Spectrum Exchangeability.
引用
收藏
页码:151 / +
页数:2
相关论文
共 18 条
[1]  
[Anonymous], 1979, RELATIONS PROBABILIT
[2]  
Carnap R., 1980, Studies in inductive logic and probability, P7, DOI [10.1525/9780520318328-002, DOI 10.1525/9780520318328-002]
[3]  
CARNAP R, 1952, CONTINUM INDUCTIVE M
[4]  
CARNAP R, 1950, LOGICAL FOUNDATIONS
[5]   CONCERNING MEASURES IN FIRST ORDER CALCULI [J].
GAIFMAN, H .
ISRAEL JOURNAL OF MATHEMATICS, 1964, 2 (01) :1-&
[6]   Some observations on induction in predicate probabilistic reasoning [J].
Hill, MJ ;
Paris, JB ;
Wilmers, GM .
JOURNAL OF PHILOSOPHICAL LOGIC, 2002, 31 (01) :43-75
[7]  
Johnson W E., 1932, MIND, V41, P409, DOI [10.1093/mind/XLI.164.409, DOI 10.1093/MIND/XLI.164.409]
[8]  
Kallenberg O., 2005, Probabilistic Symmetries and Invariance Principles
[9]  
KEMENY JG, 1963, PHILOS R CARNAP, P71
[10]   REPRESENTATION OF SYMMETRIC PROBABILITY MODELS [J].
KRAUSS, PH .
JOURNAL OF SYMBOLIC LOGIC, 1969, 34 (02) :183-&