Measure of entanglement for general pure multipartite states based on the plucker coordinates

被引:1
作者
Heydari, Hoshang [1 ]
机构
[1] Nihon Univ, Inst Quantum Sci, Chiyoda Ku, Tokyo 1018308, Japan
基金
日本学术振兴会;
关键词
D O I
10.1007/s10773-007-9391-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a measure of entanglement for general pure multipartite states based on the Placket coordinates of the Grassmann variety. In particular, we step by step construct measures of entanglement for general pure bipartite, three-partite, four-partite, and m-partite states.
引用
收藏
页码:2801 / 2807
页数:7
相关论文
共 11 条
[1]   A note on invariants and entanglements [J].
Albeverio, S ;
Fei, SM .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2001, 3 (04) :223-227
[2]  
[Anonymous], 1976, ALGEBRAIC GEOMETRY
[3]   The moduli space of three-qutrit states [J].
Briand, E ;
Luque, JG ;
Thibon, JY ;
Verstraete, F .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (12) :4855-4867
[4]   A bipartite dass of entanglement monotones for N-qubit pure states [J].
Emary, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (34) :8293-8302
[5]   Lower bound on entanglement of formation for the qubit-qudit system [J].
Gerjuoy, E .
PHYSICAL REVIEW A, 2003, 67 (05) :10
[6]  
GRIFFITHS P, 1978, PRINCIPLE ALGEBRAIC
[7]   Entanglement monotones for multi-qubit states based on geometric invariant theory [J].
Heydari, H .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (01)
[8]   On the geometry of a class of N-qubit entanglement monotones [J].
Lévay, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (41) :9075-9085
[9]  
Miyake A, 2002, QUANTUM INF COMPUT, V2, P540
[10]  
Mumford D., 1994, Geometric invariant theory