Current status and future perspectives of computational studies on human-virus protein-protein interactions

被引:24
作者
Lian, Xianyi [1 ]
Yang, Xiaodi [1 ]
Yang, Shiping [2 ]
Zhang, Ziding [1 ]
机构
[1] China Agr Univ, Coll Biol Sci, State Key Lab Agrobiotechnol, Beijing 100193, Peoples R China
[2] China Agr Univ, Coll Biol Sci, State Key Lab Plant Physiol & Biochem, Beijing 100193, Peoples R China
关键词
human-virus relationship; database; prediction; machine learning; network analysis; drug development; HEPATITIS-C VIRUS; FUNCTIONAL PROTEOMICS; INTERACTION NETWORK; MASS-SPECTROMETRY; HOST INTERACTIONS; NEURAL-NETWORKS; DRUG DISCOVERY; PREDICTION; CLASSIFICATION; IDENTIFICATION;
D O I
10.1093/bib/bbab029
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The protein-protein interactions (PPIs) between human and viruses mediate viral infection and host immunity processes. Therefore, the study of human-virus PPIs can help us understand the principles of human-virus relationships and can thus guide the development of highly effective drugs to break the transmission of viral infectious diseases. Recent years have witnessed the rapid accumulation of experimentally identified human-virus PPI data, which provides an unprecedented opportunity for bioinformatics studies revolving around human-virus PPIs. In this article, we provide a comprehensive overview of computational studies on human-virus PPIs, especially focusing on the method development for human-virus PPI predictions. We briefly introduce the experimental detection methods and existing database resources of human-virus PPIs, and then discuss the research progress in the development of computational prediction methods. In particular, we elaborate the machine learning-based prediction methods and highlight the need to embrace state-of-the-art deep-learning algorithms and new feature engineering techniques (e.g. the protein embedding technique derived from natural language processing). To further advance the understanding in this research topic, we also outline the practical applications of the human-virus interactome in fundamental biological discovery and new antiviral therapy development.
引用
收藏
页数:16
相关论文
共 144 条
[1]   A Dynamic View of Domain-Motif Interactions [J].
Akiva, Eyal ;
Friedlander, Gilgi ;
Itzhaki, Zohar ;
Margalit, Hanah .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (01)
[2]   HIV-1, human interaction database: current status and new features [J].
Ako-Adjei, Danso ;
Fu, William ;
Wallin, Craig ;
Katz, Kenneth S. ;
Song, Guangfeng ;
Darji, Dakshesh ;
Brister, J. Rodney ;
Ptak, Roger G. ;
Pruitt, Kim D. .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D566-D570
[3]   HIPPIE v2.0: enhancing meaningfulness and reliability of protein-protein interaction networks [J].
Alanis-Lobato, Gregorio ;
Andrade-Navarro, Miguel A. ;
Schaefer, Martin H. .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D408-D414
[4]   Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [J].
Alipanahi, Babak ;
Delong, Andrew ;
Weirauch, Matthew T. ;
Frey, Brendan J. .
NATURE BIOTECHNOLOGY, 2015, 33 (08) :831-+
[5]   HPIDB 2.0: a curated database for host-pathogen interactions [J].
Ammari, Mais G. ;
Gresham, Cathy R. ;
McCarthy, Fiona M. ;
Nanduri, Bindu .
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2016,
[6]  
[Anonymous], 2014, INT C MACH LEARN
[7]   PSICQUIC and PSISCORE: accessing and scoring molecular interactions [J].
Aranda, Bruno ;
Blankenburg, Hagen ;
Kerrien, Samuel ;
Brinkman, Fiona S. L. ;
Ceol, Arnaud ;
Chautard, Emilie ;
Dana, Jose M. ;
De Las Rivas, Javier ;
Dumousseau, Marine ;
Galeota, Eugenia ;
Gaulton, Anna ;
Goll, Johannes ;
Hancock, Robert E. W. ;
Isserlin, Ruth ;
Jimenez, Rafael C. ;
Kerssemakers, Jules ;
Khadake, Jyoti ;
Lynn, David J. ;
Michaut, Magali ;
O'Kelly, Gavin ;
Ono, Keiichiro ;
Orchard, Sandra ;
Prieto, Carlos ;
Razick, Sabry ;
Rigina, Olga ;
Salwinski, Lukasz ;
Simonovic, Milan ;
Velankar, Sameer ;
Winter, Andrew ;
Wu, Guanming ;
Bader, Gary D. ;
Cesareni, Gianni ;
Donaldson, Ian M. ;
Eisenberg, David ;
Kleywegt, Gerard J. ;
Overington, John ;
Ricard-Blum, Sylvie ;
Tyers, Mike ;
Albrecht, Mario ;
Hermjakob, Henning .
NATURE METHODS, 2011, 8 (07) :528-529
[8]   Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics [J].
Asgari, Ehsaneddin ;
Mofrad, Mohammad R. K. .
PLOS ONE, 2015, 10 (11)
[9]   Prediction of Interactions between Viral and Host Proteins Using Supervised Machine Learning Methods [J].
Barman, Ranjan Kumar ;
Saha, Sudipto ;
Das, Santasabuj .
PLOS ONE, 2014, 9 (11)
[10]   Protein Interaction Mapping Identifies RBBP6 as a Negative Regulator of Ebola Virus Replication [J].
Batra, Jyoti ;
Hultquist, Judd F. ;
Liu, Dandan ;
Shtanko, Olena ;
Von Dollen, John ;
Satkamp, Laura ;
Jang, Gwendolyn M. ;
Luthra, Priya ;
Schwarz, Toni M. ;
Small, Gabriel I. ;
Arnett, Eusondia ;
Anantpadma, Manu ;
Reyes, Ann ;
Leung, Daisy W. ;
Kaake, Robyn ;
Haas, Paige ;
Schmidt, Carson B. ;
Schlesinger, Larry S. ;
LaCount, Douglas J. ;
Davey, Robert A. ;
Amarasinghe, Gaya K. ;
Basler, Christopher F. ;
Krogan, Nevan J. .
CELL, 2018, 175 (07) :1917-+