Three Vortices in Spaces of Constant Curvature: Reduction, Poisson Geometry, and Stability

被引:5
作者
Borisov, Alexey V. [1 ]
Mamaev, Ivan S. [2 ]
Bizyaev, Ivan A. [1 ]
机构
[1] Udmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, Russia
[2] Moscow Inst Phys & Technol, Inst Per 9, Dolgoprudnyi 141700, Russia
基金
俄罗斯基础研究基金会;
关键词
Poisson geometry; point vortices; reduction; quadratic Poisson bracket; spaces of constant curvature; symplectic leaf; collinear configurations; 2 POINT VORTICES; VORTEX SOURCES; DEFORMATION FLOW; DYNAMICS; MOTION; SPHERE; SURFACES; FLUID; PLANE; WAVE;
D O I
10.1134/S1560354718050106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the problem of three vortices on a sphere S-2 and the Lobachevsky plane L-2. After reduction, the problem reduces in both cases to investigating a Hamiltonian system with a degenerate quadratic Poisson bracket, which makes it possible to study it using the methods of Poisson geometry. This paper presents a topological classification of types of symplectic leaves depending on the values of Casimir functions and system parameters.
引用
收藏
页码:613 / 636
页数:24
相关论文
共 50 条
[41]   Stability of hypersurfaces with constant mean curvature trapped between two parallel hyperplanes [J].
Koiso, Miyuki ;
Miyamoto, Umpei .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2024, 41 (01) :233-268
[42]   Stability of hypersurfaces of constant mean curvature with free boundary in two parallel hyperplanes [J].
Koiso, Miyuki ;
Miyamoto, Umpei .
JSIAM LETTERS, 2023, 15 :9-12
[43]   WEIGHTED PROJECTIVE EMBEDDINGS, STABILITY OF ORBIFOLDS, AND CONSTANT SCALAR CURVATURE KAHLER METRICS [J].
Ross, Julius ;
Thomas, Richard .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2011, 88 (01) :109-159
[44]   STABILITY RESULTS FOR ROTATIONALLY INVARIANT CONSTANT MEAN CURVATURE SURFACES IN HYPERBOLIC SPACE [J].
Jleli, Mohamed .
COLLOQUIUM MATHEMATICUM, 2012, 126 (02) :269-280
[45]   CONTINUOUS HAHN POLYNOMIALS OF DIFFERENTIAL OPERATOR ARGUMENT AND ANALYSIS ON RIEMANNIAN SYMMETRICAL SPACES OF CONSTANT CURVATURE [J].
BADERTSCHER, E ;
KOORNWINDER, TH .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1992, 44 (04) :750-773
[46]   The n-Body Problem in Spaces of Constant Curvature. Part I: Relative Equilibria [J].
Florin Diacu ;
Ernesto Pérez-Chavela ;
Manuele Santoprete .
Journal of Nonlinear Science, 2012, 22 :247-266
[47]   Note on integrability of certain homogeneous Hamiltonian systems in 2D constant curvature spaces [J].
Maciejewski, Andrzej J. ;
Szuminski, Wojciech ;
Przybylska, Maria .
PHYSICS LETTERS A, 2017, 381 (07) :725-732
[48]   The Kepler problem and the Laplace-Runge-Lenz vector on spaces of constant curvature and arbitrary signature [J].
Cariñena J.F. ;
Rañada M.F. ;
Santander M. .
Qualitative Theory of Dynamical Systems, 2008, 7 (1) :87-99
[49]   The n-Body Problem in Spaces of Constant Curvature. Part I: Relative Equilibria [J].
Diacu, Florin ;
Perez-Chavela, Ernesto ;
Santoprete, Manuele .
JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (02) :247-266
[50]   Necessary conditions for classical super-integrability of a certain family of potentials in constant curvature spaces [J].
Maciejewski, Andrzej J. ;
Przybylska, Maria ;
Yoshida, Haruo .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (38)