Three Vortices in Spaces of Constant Curvature: Reduction, Poisson Geometry, and Stability

被引:5
作者
Borisov, Alexey V. [1 ]
Mamaev, Ivan S. [2 ]
Bizyaev, Ivan A. [1 ]
机构
[1] Udmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, Russia
[2] Moscow Inst Phys & Technol, Inst Per 9, Dolgoprudnyi 141700, Russia
基金
俄罗斯基础研究基金会;
关键词
Poisson geometry; point vortices; reduction; quadratic Poisson bracket; spaces of constant curvature; symplectic leaf; collinear configurations; 2 POINT VORTICES; VORTEX SOURCES; DEFORMATION FLOW; DYNAMICS; MOTION; SPHERE; SURFACES; FLUID; PLANE; WAVE;
D O I
10.1134/S1560354718050106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the problem of three vortices on a sphere S-2 and the Lobachevsky plane L-2. After reduction, the problem reduces in both cases to investigating a Hamiltonian system with a degenerate quadratic Poisson bracket, which makes it possible to study it using the methods of Poisson geometry. This paper presents a topological classification of types of symplectic leaves depending on the values of Casimir functions and system parameters.
引用
收藏
页码:613 / 636
页数:24
相关论文
共 50 条
[31]   STABILITY OF CONSTANT MEAN CURVATURE HYPERSURFACES OF REVOLUTION IN HYPERBOLIC SPACE [J].
Jleli, Mohamed .
ACTA MATHEMATICA SCIENTIA, 2013, 33 (03) :830-838
[32]   CONSTANT MEAN CURVATURE SPHERES IN HOMOGENEOUS THREE-SPHERES [J].
Meeks, William H. ;
Mira, Pablo ;
Perez, Joaquin ;
Ros, Antonio .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2022, 120 (02) :307-343
[33]   Continuation of relative equilibria in the n-body problem to spaces of constant curvature [J].
Bengochea, A. ;
Garcia-Azpeitia, C. ;
Perez-Chavela, E. ;
Roldan, P. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 307 :137-159
[34]   Metrics of Constant Positive Curvature with Conical Singularities, Hurwitz Spaces, and Determinants of Laplacians [J].
Kalvin, Victor ;
Kokotov, Alexey .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (10) :3242-3264
[35]   SPHERE-FOLIATED MINIMAL AND CONSTANT MEAN CURVATURE HYPERSURFACES IN PRODUCT SPACES [J].
Se, Keomkyo .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (02) :335-342
[36]   Invariant constant mean curvature tubes around a horizontal geodesic in E(κ, τ)-spaces [J].
Manzano, Jose M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
[37]   On the stability of constant higher order mean curvature hypersurfaces in a Riemannian manifold [J].
Elbert, Maria Fernanda ;
Nelli, Barbara .
MATHEMATISCHE NACHRICHTEN, 2024, 297 (11) :4031-4043
[38]   Quantitative Stability for Hypersurfaces with Almost Constant Mean Curvature in the Hyperbolic Space [J].
Ciraolo, Giulio ;
Vezzoni, Luigi .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2020, 69 (04) :1105-1153
[39]   Support theorems for Funk-type isodistant Radon transforms on constant curvature spaces [J].
Kurusa, Arpad .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (03) :1157-1187
[40]   ON BEHAVIOR OF QUANTUM PARTICLES IN AN ELECTRIC FIELD IN SPACES OF CONSTANT CURVATURE, HYPERBOLIC AND SPHERICAL MODELS [J].
Ovsiyuk, E. M. ;
Veko, O. V. .
UKRAINIAN JOURNAL OF PHYSICS, 2013, 58 (11) :1065-1072