Three Vortices in Spaces of Constant Curvature: Reduction, Poisson Geometry, and Stability

被引:5
作者
Borisov, Alexey V. [1 ]
Mamaev, Ivan S. [2 ]
Bizyaev, Ivan A. [1 ]
机构
[1] Udmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, Russia
[2] Moscow Inst Phys & Technol, Inst Per 9, Dolgoprudnyi 141700, Russia
基金
俄罗斯基础研究基金会;
关键词
Poisson geometry; point vortices; reduction; quadratic Poisson bracket; spaces of constant curvature; symplectic leaf; collinear configurations; 2 POINT VORTICES; VORTEX SOURCES; DEFORMATION FLOW; DYNAMICS; MOTION; SPHERE; SURFACES; FLUID; PLANE; WAVE;
D O I
10.1134/S1560354718050106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the problem of three vortices on a sphere S-2 and the Lobachevsky plane L-2. After reduction, the problem reduces in both cases to investigating a Hamiltonian system with a degenerate quadratic Poisson bracket, which makes it possible to study it using the methods of Poisson geometry. This paper presents a topological classification of types of symplectic leaves depending on the values of Casimir functions and system parameters.
引用
收藏
页码:613 / 636
页数:24
相关论文
共 50 条
[21]   ON ORTHOGONAL CURVILINEAR COORDINATE SYSTEMS IN CONSTANT CURVATURE SPACES [J].
Berdinsky, D. A. ;
Rybnikov, I. P. .
SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (03) :394-401
[22]   On orthogonal curvilinear coordinate systems in constant curvature spaces [J].
Berdinsky D.A. ;
Rybnikov I.P. .
Siberian Mathematical Journal, 2011, 52 (3) :394-401
[23]   ON COMMUTING BILLIARDS IN HIGHER-DIMENSIONAL SPACES OF CONSTANT CURVATURE [J].
Glutsyuk, Alexey .
PACIFIC JOURNAL OF MATHEMATICS, 2020, 305 (02) :577-595
[24]   Variational property of periodic Kepler orbits in constant curvature spaces [J].
Deng, Yanxia ;
Diacu, Florin ;
Zhu, Shuqiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (10) :5851-5869
[25]   Stability of hypersurfaces with constant r-mean curvature [J].
Barbosa, JLM ;
Colares, AG .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1997, 15 (03) :277-297
[26]   Classical and quantum dynamics of a constrained particle on three-dimensional spaces of constant curvature: An algebraic approach on the superintegrable problem [J].
Najafizade, Amene ;
Panahi, Hossein .
MODERN PHYSICS LETTERS A, 2022, 37 (22)
[27]   Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature [J].
Rajaratnam, Krishan ;
Mclenaghan, Raymond G. ;
Valero, Carlos .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
[28]   Intertwining Symmetry Algebras of Quantum Superintegrable Systems on Constant Curvature Spaces [J].
Calzada, J. A. ;
Kuru, S. ;
Negro, J. ;
del Olmo, M. A. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (07) :2067-2073
[29]   Stability of fixed points in Poisson geometry and higher Lie theory [J].
Singh, Karandeep J. .
ADVANCES IN MATHEMATICS, 2025, 464
[30]   Stability of Capillary Hypersurfaces with Constant Higher Order Mean Curvature [J].
Damasceno, Leonardo ;
Elbert, Maria Fernanda .
JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (12)