共 50 条
Three Vortices in Spaces of Constant Curvature: Reduction, Poisson Geometry, and Stability
被引:5
作者:
Borisov, Alexey V.
[1
]
Mamaev, Ivan S.
[2
]
Bizyaev, Ivan A.
[1
]
机构:
[1] Udmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, Russia
[2] Moscow Inst Phys & Technol, Inst Per 9, Dolgoprudnyi 141700, Russia
基金:
俄罗斯基础研究基金会;
关键词:
Poisson geometry;
point vortices;
reduction;
quadratic Poisson bracket;
spaces of constant curvature;
symplectic leaf;
collinear configurations;
2 POINT VORTICES;
VORTEX SOURCES;
DEFORMATION FLOW;
DYNAMICS;
MOTION;
SPHERE;
SURFACES;
FLUID;
PLANE;
WAVE;
D O I:
10.1134/S1560354718050106
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper is concerned with the problem of three vortices on a sphere S-2 and the Lobachevsky plane L-2. After reduction, the problem reduces in both cases to investigating a Hamiltonian system with a degenerate quadratic Poisson bracket, which makes it possible to study it using the methods of Poisson geometry. This paper presents a topological classification of types of symplectic leaves depending on the values of Casimir functions and system parameters.
引用
收藏
页码:613 / 636
页数:24
相关论文
共 50 条