CONVERGENT RELAXATIONS OF POLYNOMIAL OPTIMIZATION PROBLEMS WITH NONCOMMUTING VARIABLES

被引:114
作者
Pironio, S. [1 ,2 ]
Navascues, M. [3 ]
Acin, A. [4 ]
机构
[1] Univ Geneva, Appl Phys Grp, Geneva, Switzerland
[2] Univ Libre Bruxelles, Lab Informat Quant, Brussels, Belgium
[3] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
[4] ICFO Inst Ciencies Foton, Barcelona, Spain
关键词
global optimization; semidefinite programming; positive polynomials; noncommutative variables; SQUARES; SUMS;
D O I
10.1137/090760155
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider optimization problems with polynomial inequality constraints in noncommuting variables. These noncommuting variables are viewed as bounded operators on a Hilbert space whose dimension is not fixed and the associated polynomial inequalities as semidefinite positivity constraints. Such problems arise naturally in quantum theory and quantum information science. To solve them, we introduce a hierarchy of semidefinite programming relaxations which generates a monotone sequence of lower bounds that converges to the optimal solution. We also introduce a criterion to detect whether the global optimum is reached at a given relaxation step and show how to extract a global optimizer from the solution of the corresponding semidefinite programming problem.
引用
收藏
页码:2157 / 2180
页数:24
相关论文
共 27 条
[1]  
Cafuta K., NCSOSTOOLS COMPUTER
[2]  
CURTO RE, 1996, MEM AM MATH SOC, V568, P119
[3]  
Doherty A.C., 2008, Proceedings of the 23rd IEEE Conference on Computational Complexity (IEEE Computer Society, College Park, MD), P199
[4]   A Positivstellensatz for non-commutative polynomials [J].
Helton, JW ;
McCullough, SA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (09) :3721-3737
[5]   Positive noncommutative polynomials are sums of squares [J].
Helton, JW .
ANNALS OF MATHEMATICS, 2002, 156 (02) :675-694
[6]  
HELTON JW, 2007, INT BOOK SERIES MATH, P229
[7]   Convergent relaxations of polynomial matrix inequalities and static output feedback [J].
Henrion, D ;
Lasserre, JB .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (02) :192-202
[8]  
Henrion D, 2005, LECT NOTES CONTR INF, V312, P293
[9]  
ITO T, QUANTUM MULTIP UNPUB
[10]   A Nichtnegativstellensatz for polynomials in noncommuting variables [J].
Klep, Igor ;
Schweighofer, Markus .
ISRAEL JOURNAL OF MATHEMATICS, 2007, 161 (01) :17-27