Crystalline materials for quantum computing: Semiconductor heterostructures and topological insulators exemplars

被引:25
作者
Scappucci, G. [1 ,2 ]
Taylor, P. J. [3 ]
Williams, J. R. [4 ]
Ginley, T. [5 ]
Law, S. [6 ,7 ]
机构
[1] Delft Univ Technol, QuTech, Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, Delft, Netherlands
[3] US Army, Res Lab, Sensors & Electron Devices Directorate, Adelphi, MD USA
[4] Univ Maryland, Dept Phys, Phys, College Pk, MD 20742 USA
[5] NIST, Gaithersburg, MD 20899 USA
[6] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
[7] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
Spin qubits; Topological insulators; Topological crystalline insulators; EPITAXIAL-GROWTH; THIN-FILMS; SEMIMETAL; SILICON; BI2SE3; GATE; SPIN; MOBILITY; LOGIC; METAL;
D O I
10.1557/s43577-021-00147-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-purity crystalline solid-state materials play an essential role in various technologies for quantum information processing, from qubits based on spins to topological states. New and improved crystalline materials emerge each year and continue to drive new results in experimental quantum science. This article summarizes the opportunities for a selected class of crystalline materials for qubit technologies based on spins and topological states and the challenges associated with their fabrication. We start by describing semiconductor heterostructures for spin qubits in gate-defined quantum dots and benchmark GaAs, Si, and Ge, the three platforms that demonstrated two-qubit logic. We then examine novel topologically nontrivial materials and structures that might be incorporated into superconducting devices to create topological qubits. We review topological insulator thin films and move onto topological crystalline materials, such as PbSnTe, and its integration with Josephson junctions. We discuss advances in novel and specialized fabrication and characterization techniques to enable these. We conclude by identifying the most promising directions where advances in these material systems will enable progress in qubit technology.
引用
收藏
页码:596 / 606
页数:11
相关论文
共 96 条
  • [1] Molecular beam epitaxy of thin HfTe2 semimetal films
    Aminalragia-Giamini, S.
    Marquez-Velasco, J.
    Tsipas, P.
    Tsoutsou, D.
    Renaud, G.
    Dimoulas, A.
    [J]. 2D MATERIALS, 2017, 4 (01):
  • [2] Topological Crystalline Insulators and Topological Superconductors: From Concepts to Materials
    Ando, Yoichi
    Fu, Liang
    [J]. ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 6, 2015, 6 : 361 - 381
  • [3] Gate-defined quantum dots in intrinsic silicon
    Angus, Susan J.
    Ferguson, Andrew J.
    Dzurak, Andrew S.
    Clark, Robert G.
    [J]. NANO LETTERS, 2007, 7 (07) : 2051 - 2055
  • [4] Weyl and Dirac semimetals in three-dimensional solids
    Armitage, N. P.
    Mele, E. J.
    Vishwanath, Ashvin
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
  • [5] Auth C., 2017, 2017 IEEE International Electron Devices Meeting (IEDM), p29.1.1, DOI 10.1109/IEDM.2017.8268472
  • [6] Colloquium: Topological band theory
    Bansil, A.
    Lin, Hsin
    Das, Tanmoy
    [J]. REVIEWS OF MODERN PHYSICS, 2016, 88 (02)
  • [7] Realization of Epitaxial NbP and TaP Weyl Semimetal Thin Films
    Bedoya-Pinto, Amilcar
    Pandeya, Avanindra Kumar
    Liu, Defa
    Deniz, Hakan
    Chang, Kai
    Tan, Hengxin
    Han, Hyeon
    Jena, Jagannath
    Kostanovskiy, Ilya
    Parkin, Stuart S. P.
    [J]. ACS NANO, 2020, 14 (04) : 4405 - 4413
  • [8] Molecular beam epitaxy growth of nonmagnetic Weyl semimetal LaAlGe thin film
    Bhattarai, Niraj
    Forbes, Andrew W.
    Dulal, Rajendra P.
    Pegg, Ian L.
    Philip, John
    [J]. MRS COMMUNICATIONS, 2020, 10 (02) : 272 - 277
  • [9] Bojarski S., 2021, ARXIVABS210112650
  • [10] Pauli spin blockade in undoped Si/SiGe two-electron double quantum dots
    Borselli, M. G.
    Eng, K.
    Croke, E. T.
    Maune, B. M.
    Huang, B.
    Ross, R. S.
    Kiselev, A. A.
    Deelman, P. W.
    Alvarado-Rodriguez, I.
    Schmitz, A. E.
    Sokolich, M.
    Holabird, K. S.
    Hazard, T. M.
    Gyure, M. F.
    Hunter, A. T.
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (06)