A Low Complexity 16 x 16 Butler Matrix Design Using Eight-Port Hybrids

被引:5
作者
Yang, Qingling [1 ]
Gao, Steven [1 ]
Luo, Qi [1 ]
Wen, Lehu [1 ]
Ren, Xiaofei [2 ]
Wu, Jian [2 ]
Ban, Yong-Ling [3 ]
Yang, Xuexia [4 ]
机构
[1] Univ Kent, Sch Engn & Digital Arts, Canterbury CT2 7NZ, Kent, England
[2] China Res Inst Radiowave Propagat, Xinxiang 453003, Henan, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, Chengdu 611731, Peoples R China
[4] Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200444, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
基金
英国工程与自然科学研究理事会;
关键词
Butler matrix; directional coupler; eight-port hybrid; multibeam; phase shifter; PHASE SHIFTERS; ARRAY ANTENNA; SWITCHED-BEAM; MICROSTRIP; COMPACT; COUPLERS; PLANAR;
D O I
10.1109/ACCESS.2019.2958739
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Beamforming networks such as Butler Matrices are important for multibeam array antenna applications. The challenge for Butler Matrix design is that their complexity increases with the number of ports. In this paper, a novel approach of designing a 16 x 16 Butler Matrix with significant structure simplification is presented. The eight-port hybrids with no crossovers are used to simplify the network. To ensure the network has the same magnitude and phase responses as the standard one, the location and phase shifting value of each fixed phase shifter are derived from the S-matrix of each hybrid. A 16 x 16 Butler Matrix network operating from 9 GHz-11 GHz is designed to validate this concept. The compensated microstrip 3-dB/90 degrees directional coupler, the phase shifter with a shunt open-and-short stub and the crossover with a resonating patch are used to reduce the transmission loss and enable broadband operation.
引用
收藏
页码:177864 / 177873
页数:10
相关论文
共 29 条
[1]  
ANGELUCCI A, 1994, IEEE AP-S, P628, DOI 10.1109/APS.1994.407675
[2]  
Bhattacharyya A. K., 2006, Phased Array Antennas: Floquet Analysis, Synthesis, BFNs and Active Array Systems, V179
[3]   Low-loss compact butler matrix for a microstrip antenna [J].
Bona, M ;
Manholm, L ;
Starski, JP ;
Svensson, B .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2002, 50 (09) :2069-2075
[4]   60-GHz LTCC Miniaturized Substrate Integrated Multibeam Array Antenna With Multiple Polarizations [J].
Cheng, Yu Jian ;
Bao, Xiao Yue ;
Guo, Yong Xin .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (12) :5958-5967
[5]   Millimeter-Wave Multibeam Antenna Based on Eight-Port Hybrid [J].
Cheng, Yu Jian ;
Hong, Wei ;
Wu, Ke .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2009, 19 (04) :212-214
[6]   A V-Band 8 x 8 CMOS Butler Matrix MMIC [J].
Chin, Ting-Yueh ;
Wu, Jen-Chieh ;
Chang, Sheng-Fuh ;
Chang, Chia-Chan .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2010, 58 (12) :3538-3546
[7]  
DELILLO RA, 1993, IEEE AP-S, P474, DOI 10.1109/APS.1993.385304
[8]  
Gruszczynski S, 2009, IEEE T MICROW THEORY, V57, P1, DOI 10.1109/TMTT.2008.2009081
[9]   Multibeam Antenna Technologies for 5G Wireless Communications [J].
Hong, Wei ;
Jiang, Zhi Hao ;
Yu, Chao ;
Zhou, Jianyi ;
Chen, Peng ;
Yu, Zhiqiang ;
Zhang, Hui ;
Yang, Binqi ;
Pang, Xingdong ;
Jiang, Mei ;
Cheng, Yujian ;
Al-Nuaitni, Mustafa K. Taher ;
Zhang, Yan ;
Chen, Jixin ;
He, Shiwen .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (12) :6231-6249
[10]  
Jang T. H, 2016, PROC ASIA PACIFIC MI, P1