Anti-N-order polynomial Daugavet property on Banach spaces

被引:0
|
作者
Emenyu, John [1 ]
机构
[1] Mbarara Univ Sci & Technol, Dept Math, POB 1410, Mbarara, Uganda
来源
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS | 2021年 / 12卷 / 01期
关键词
Banach spaces; local and uniform convexity; polynomials; Daugavet Equation; N-order Polynomial Daugavet property; anti-N-order Polynomial Daugavet property; OPERATORS; EQUATION; APPROXIMATION; MAPPINGS;
D O I
10.22075/ijnaa.2019.16371.1865
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the notion of the anti-Daugavet property (a-DP) to the anti -N-order Polynomial Daugavet property (a-NPDP) for Banach spaces by identifying a good spectrum of a polynomial and prove that locally uniformly alternatively convex or smooth Banach spaces have the a-mDP for rank-1 polynomials. We then prove that locally uniformly convex Banach spaces have the aNPDP for compact polynomials if and only if their norms are eigenvalues, and uniformly convex Banach spaces have the a-NPDP for continuous polynomials if and only if their norms belong to the approximate spectra.
引用
收藏
页码:1097 / 1105
页数:9
相关论文
共 50 条
  • [1] Representable spaces have the polynomial Daugavet property
    Botelho, Geraldo
    Santos, Elisa R.
    ARCHIV DER MATHEMATIK, 2016, 107 (01) : 37 - 42
  • [2] Banach spaces with the Daugavet property
    Kadets, VM
    Shvidkoy, RV
    Sirotkin, GG
    Werner, D
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (02) : 855 - 873
  • [3] An alternative polynomial Daugavet property
    Santos, Elisa R.
    STUDIA MATHEMATICA, 2014, 224 (03) : 265 - 276
  • [4] Representable spaces have the polynomial Daugavet property
    Geraldo Botelho
    Elisa R. Santos
    Archiv der Mathematik, 2016, 107 : 37 - 42
  • [5] Daugavet property in projective symmetric tensor products of Banach spaces
    Martin, Miguel
    Rueda Zoca, Abraham
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (02)
  • [6] Narrow operators and rich subspaces of Banach spaces with the Daugavet property
    Kadets, VM
    Shvidkoy, RV
    Werner, D
    STUDIA MATHEMATICA, 2001, 147 (03) : 269 - 298
  • [7] The polynomial Daugavet property for atomless L1(μ)-spaces
    Martin, Miguel
    Meri, Javier
    Popov, Mikhail
    ARCHIV DER MATHEMATIK, 2010, 94 (04) : 383 - 389
  • [8] The polynomial Daugavet property for atomless L1(μ)-spaces
    Miguel Martín
    Javier Merí
    Mikhail Popov
    Archiv der Mathematik, 2010, 94 : 383 - 389
  • [9] The p-Daugavet property for function spaces
    Sanchez Perez, Enrique A.
    Werner, Dirk
    ARCHIV DER MATHEMATIK, 2011, 96 (06) : 565 - 575
  • [10] Daugavet centers and direct sums of Banach spaces
    Bosenko, Tetiana V.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (02): : 346 - 356