X-ray Photoelectron Spectroscopy Studies of Nanoparticles Dispersed in Static Liquid

被引:8
|
作者
Nguyen, Luan [1 ]
Tao, Paul Pengcheng [1 ]
Liu, Huimin [1 ]
Al-Hada, Mohamed [2 ]
Amati, Matteo [2 ]
Sezen, Hikmet [2 ]
Gregoratti, Luca [2 ]
Tang, Yu [1 ]
House, Stephen D. [3 ]
Tao, Franklin Feng [1 ]
机构
[1] Univ Kansas, Dept Chem & Petr Engn, Lawrence, KS 66045 USA
[2] Elettra Sincrotrone Trieste ScPA, I-34012 Trieste, Italy
[3] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA
关键词
IN-SITU; ELECTRONIC-STRUCTURE; COUPLING REACTIONS; CATALYST; NANOCATALYSTS; DYNAMICS; MICROSCOPY; INTERFACE; CHEMISTRY; SURFACES;
D O I
10.1021/acs.langmuir.8b00806
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For nanoparticles active for chemical and energy transformations in static liquid environment, chemistries of surface or near-surface regions of these catalyst nanoparticles in liquid are crucial for fundamentally understanding their catalytic performances at a molecular level. Compared to catalysis at a solid-gas interface, there is very limited information on the surface of these catalyst nanoparticles under a working condition or during catalysis in liquid. Photoelectron spectroscopy is a surface-sensitive technique; however, it is challenging to study the surfaces of catalyst nanoparticles dispersed in static liquid because of the short inelastic mean free path of photoelectrons traveling in liquid. Here, we report a method for tracking the surface of nanoparticles dispersed in static liquid by employing graphene layers as an electron-transparent membrane to separate the static liquid containing a solvent, catalyst nanoparticles, and reactants from the high-vacuum environment of photoelectron spectrometers. The surfaces of Ag nanoparticles dispersed in static liquid sealed in such a graphene membrane liquid cell were successfully characterized using a photoelectron spectrometer equipped with a high vacuum energy analyzer. With this method, the surface of catalyst nanoparticles dispersed in liquid during catalysis at a relatively high temperature up to 150 degrees C can be tracked with photoelectron spectroscopy.
引用
收藏
页码:9606 / 9616
页数:11
相关论文
共 50 条
  • [1] Radiation damage of liquid electrolyte during focused X-ray beam photoelectron spectroscopy
    Arble, Christopher
    Guo, Hongxuan
    Strelcov, Evgheni
    Hoskins, Brian
    Zeller, Patrick
    Amati, Matteo
    Gregoratti, Luca
    Kolmakov, Andrei
    SURFACE SCIENCE, 2020, 697 (697)
  • [2] A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions
    Brown, Matthew A.
    Redondo, Amaia Beloqui
    Jordan, Inga
    Duyckaerts, Nicolas
    Lee, Ming-Tao
    Ammann, Markus
    Nolting, Frithjof
    Kleibert, Armin
    Huthwelker, Thomas
    Maechler, Jean-Pierre
    Birrer, Mario
    Honegger, Juri
    Wetter, Reto
    Woerner, Hans Jakob
    van Bokhoven, Jeroen A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (07)
  • [3] Introduction to x-ray photoelectron spectroscopy
    Stevie, Fred A.
    Donley, Carrie L.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2020, 38 (06):
  • [4] Using "Tender" X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface
    Axnanda, Stephanus
    Crumlin, Ethan J.
    Mao, Baohua
    Rani, Sana
    Chang, Rui
    Karlsson, Patrik G.
    Edwards, Marten O. M.
    Lundqvist, Mans
    Moberg, Robert
    Ross, Phil
    Hussain, Zahid
    Liu, Zhi
    SCIENTIFIC REPORTS, 2015, 5
  • [5] Ultrafast Soft X-ray Photoelectron Spectroscopy at Liquid Water Microjets
    Faubel, M.
    Siefermann, K. R.
    Liu, Y.
    Abel, B.
    ACCOUNTS OF CHEMICAL RESEARCH, 2012, 45 (01) : 120 - 130
  • [6] Operando X-Ray Photoelectron Spectroscopy Studies of Aqueous Electrocatalytic Systems
    Ogasawara, Hirohito
    Kaya, Sarp
    Nilsson, Anders
    TOPICS IN CATALYSIS, 2016, 59 (5-7) : 439 - 447
  • [7] The Fermi level as an energy reference in liquid jet X-ray photoelectron spectroscopy studies of aqueous solutions
    Perez Ramirez, Lucia
    Boucly, Anthony
    Saudrais, Florent
    Bournel, Fabrice
    Gallet, Jean-Jacques
    Maisonhaute, Emmanuel
    Milosavljevic, Aleksandar R.
    Nicolas, Christophe
    Rochet, Francois
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (30) : 16224 - 16233
  • [8] X-ray Photoelectron Spectroscopy: A Unique Tool To Determine the Internal Heterostructure of Nanoparticles
    Sarma, D. D.
    Santra, Pralay K.
    Mukherjee, Sumanta
    Nag, Angshuman
    CHEMISTRY OF MATERIALS, 2013, 25 (08) : 1222 - 1232
  • [9] X-Ray Photoelectron Spectroscopy of FeP Phosphide
    Teterin, Yu. A.
    Sobolev, A. V.
    Presnyakov, I. A.
    Maslakov, K. I.
    Teterin, A. Yu.
    Morozov, I. V.
    Chernyavskii, I. O.
    Ivanov, K. E.
    Shevel'kov, A. V.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2017, 124 (02) : 251 - 260
  • [10] Time-resolved x-ray photoelectron spectroscopy at FLASH
    Hellmann, S.
    Sohrt, C.
    Beye, M.
    Rohwer, T.
    Sorgenfrei, F.
    Marczynski-Buehlow, M.
    Kallaene, M.
    Redlin, H.
    Hennies, F.
    Bauer, M.
    Foehlisch, A.
    Kipp, L.
    Wurth, W.
    Rossnagel, K.
    NEW JOURNAL OF PHYSICS, 2012, 14