Corrosion resistance enhancement of magnesium alloy by N-doped graphene quantum dots and polymethyltrimethoxysilane composite coating

被引:56
作者
Jiang, B. K. [1 ]
Chen, A. Y. [1 ]
Gu, J. F. [2 ]
Fan, J. T. [3 ]
Liu, Y. [4 ]
Wang, P. [1 ]
Li, H. J. [1 ]
Sun, H. [1 ]
Yang, J. H. [1 ]
Wang, X. Y. [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Mat Sci & Engn, Shanghai 200093, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
[3] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
[4] Nanchang Univ, Key Lab Near Net Forming Jiangxi Prov, Nanchang 330031, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnesium; N-doped graphene quantum dots; Coating; Electrochemical deposition; Corrosion resistance; MG ALLOY; CERIUM OXIDE; PROTECTION; LAYER; ELECTRODEPOSITION; PERFORMANCE; INHIBITOR; MECHANISM; STEEL; FILM;
D O I
10.1016/j.carbon.2019.09.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A composite coating of N-doped graphene quantum dots (N-GQDs)/polymethyltrimethoxysilane (PMTMS) is prepared on the surface of AZ91D magnesium alloy via electrodeposition and subsequent silane treatment. The microstructure of the N-GQDs/PMTMS composite coating is characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The corrosion resistance performance is investigated by electrochemical impedance spectroscopy (EIS) and immersion test in NaCl solution (3.5 wt%). The N-GQDs/PMTMS composite coating exhibits a significant enhancement of corrosion resistance due to the chemical bonding of N-GQDs coating with Mg substrate and PMTMS coating. The formation mechanisms and nature of the corrosion resistance of the N-GQDs/PMTMS coating are discussed. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:537 / 548
页数:12
相关论文
共 37 条
[1]   Corrosion of Magnesium-Aluminum Alloys with Al-11Si/SiC Thermal Spray Composite Coatings in Chloride Solution [J].
Arrabal, R. ;
Pardo, A. ;
Merino, M. C. ;
Mohedano, M. ;
Casajus, P. ;
Matykina, E. .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2011, 20 (03) :569-579
[2]   Effects of strain rate on the low cycle fatigue behavior of AZ31B magnesium alloy processed by SMAT [J].
Chen, Gang ;
Gao, Jianwen ;
Cui, Yun ;
Gao, Hong ;
Guo, Xiang ;
Wu, Suzhou .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 735 :536-546
[3]   Graphene oxide film as a protective barrier for Mg alloy: Worse or better is dependent on a chemical reduction process [J].
Chu, J. H. ;
Tong, L. B. ;
Wen, M. ;
Jiang, Z. H. ;
Wang, K. S. ;
Zhang, H. J. .
CARBON, 2019, 145 :389-400
[4]   Silane/TiO2 coating to control the corrosion rate of magnesium alloys in simulated body fluid [J].
Cordoba, L. C. ;
Montemor, M. F. ;
Coradin, T. .
CORROSION SCIENCE, 2016, 104 :152-161
[5]   Electrodeposition of TiO2 layer-by-layer assembled composite coating and silane treatment on Mg alloy for corrosion resistance [J].
Cui, Lan-Yue ;
Qin, Peng-Hua ;
Huang, Xiao-Li ;
Yin, Zheng-Zheng ;
Zeng, Rong-Chang ;
Li, Shuo-Qi ;
Han, En-Hou ;
Wang, Zhen-Lin .
SURFACE & COATINGS TECHNOLOGY, 2017, 324 :560-568
[6]   Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31 [J].
Cui, Lan-Yue ;
Gao, Shang-Dong ;
Li, Ping-Ping ;
Zeng, Rong-Chang ;
Zhang, Fen ;
Li, Shuo-Qi ;
Han, En-Hou .
CORROSION SCIENCE, 2017, 118 :84-95
[7]   A brief review of corrosion protective films and coatings based on graphene and graphene oxide [J].
Ding, Rui ;
Li, Weihua ;
Wang, Xiao ;
Gui, Taijiang ;
Li, Bingjun ;
Han, Peng ;
Tian, Huiwen ;
Liu, Ang ;
Wang, Xin ;
Liu, Xiaojie ;
Gao, Xiang ;
Wang, Wei ;
Song, Liying .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 764 :1039-1055
[8]   Fundamentals and advances in magnesium alloy corrosion [J].
Esmaily, M. ;
Svensson, J. E. ;
Fajardo, S. ;
Birbilis, N. ;
Frankel, G. S. ;
Virtanen, S. ;
Arrabal, R. ;
Thomas, S. ;
Johansson, L. G. .
PROGRESS IN MATERIALS SCIENCE, 2017, 89 :92-193
[9]   Tuning the photoluminescence of graphene oxide quantum dots by photochemical fluorination [J].
Gao, Fuhua ;
Liu, Fuchi ;
Bai, Xiaohua ;
Xu, Xiaofen ;
Kong, Wenjie ;
Liu, Jun ;
Lv, Fengzhen ;
Long, Lizhen ;
Yang, Yong ;
Li, Ming .
CARBON, 2019, 141 :331-338
[10]   A room temperature volatile organic compound sensor with enhanced performance, fast response and recovery based on N-doped graphene quantum dots and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) nanocomposite [J].
Gavgani, Jaber Nasrollah ;
Dehsari, Hamed Sharifi ;
Hasani, Amirhossein ;
Mahyari, Mojtaba ;
Shalamzari, Elham Khodabakhshi ;
Salehi, Alireza ;
Taromi, Farmarz Afshar .
RSC ADVANCES, 2015, 5 (71) :57559-57567