GBMPSO: Hybrid Gradient Boosting Machines with Particle Swarm Optimization in Cell Segmentation Data

被引:1
作者
Adeluwa, Temidayo [1 ,3 ]
Kim, Eunjin [2 ]
Hur, Junguk [1 ]
机构
[1] Univ North Dakota, Dept Biomed Sci, Grand Forks, ND 58202 USA
[2] Univ North Dakota, Sch EECS, Grand Forks, ND 58202 USA
[3] Univ Chicago, Comm Genet Genom & Syst Biol, Chicago, IL 60637 USA
来源
2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021) | 2021年
关键词
gradient boosting; particle swarm optimization; ensemble method;
D O I
10.1109/SSCI50451.2021.9660039
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a hybrid computing model, named GBMPSO, that enhances the performance of gradient boosting machines (GBMs) whose hyperparameters are optimized by particle swarm optimization algorithm. GBMs are tree-based ensemble algorithms that are used for various machine learning tasks. Particle swarm optimization is a stochastic, metaheuristic swarm-based optimization algorithm. The performance of GBMPSO is tested on a cell segmentation dataset. Our experiment shows the outperformance of GBMPSO over a random search-based GBM and Xgboost, highlighting the potential superiority of GBMPSO over other models and its application to classification problems of other problem domains.
引用
收藏
页数:8
相关论文
共 28 条
  • [1] [Anonymous], Kaggle: Your Machine Learning and Data Science Community
  • [2] [Anonymous], GRADIENT BOOSTING WH
  • [3] Predicting Protein-Protein Interactions based on Biological Information using Extreme Gradient Boosting
    Beltran, Jerome Cary
    Valdez, Paolo
    Naval, Prospero, Jr.
    [J]. 2019 16TH IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY - CIBCB 2019, 2019, : 346 - 351
  • [4] Cao G., 2019, PRIMARY LIVER CANC E, DOI [10.1109/ICIIBMS46890.2019.8991441, DOI 10.1109/ICIIBMS46890.2019.8991441]
  • [5] Chen T.Q., 2016, KDD16 P 22 ACM, DOI DOI 10.1145/2939672.2939785
  • [6] Building protein-protein interaction networks for Leishmania species through protein structural information
    dos Santos Vasconcelos, Crhisllane Rafaele
    Campos, Tulio de Lima
    Rezende, Antonio Mauro
    [J]. BMC BIOINFORMATICS, 2018, 19
  • [7] Review on applications of particle swarm optimization in solar energy systems
    Elsheikh, A. H.
    Abd Elaziz, M.
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2019, 16 (02) : 1159 - 1170
  • [8] A decision-theoretic generalization of on-line learning and an application to boosting
    Freund, Y
    Schapire, RE
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 55 (01) : 119 - 139
  • [9] Impact of image segmentation on high-content screening data quality for SK-BR-3 cells
    Hill, Andrew A.
    LaPan, Peter
    Li, Yizheng
    Haney, Steve
    [J]. BMC BIOINFORMATICS, 2007, 8 (1)
  • [10] Ke GL, 2017, ADV NEUR IN, V30