Plasmonic multi-thorny Gold nanostructures for enhanced solar thermal conversion

被引:45
作者
He, Yurong [1 ]
Chen, Meijie
Wang, Xinzhi
Hu, Yanwei
机构
[1] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Seed mediated method; Au nanoparticle; Morphology control; Solar thermal conversion; PHOTOTHERMAL CONVERSION; ENERGY CONVERSION; OPTICAL-PROPERTIES; NANOPARTICLES; NANOFLUIDS; ABSORPTION; COLLECTOR; NANOCRYSTALS; PERFORMANCE; EFFICIENCY;
D O I
10.1016/j.solener.2018.06.071
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this work, thorny Au nanoparticles (NPs) a broadband surface plasmon resonance (SPR) peak were used to enhanced the solar thermal conversion (STC) performance. The SPR peak of the thorny Au NPs can be tuned from 562 nm to 812 nm with the size ranging from 42 to 188 nm, which was controlled by the amount of Ag+ in the growth process and the seed additive amount for optical and morphological evolution of Au NPs. Experiments indicated that the thorny Au NPs can greatly enhance the STC efficiency, the maximal increase of which was 152.0% and 18.5% compared with pure water and quasi-spherical Au NPs respectively. Then, the particle heating model was applied to further confirm that the thorny NP can enhance the solar heating process significantly. Results indicated that the thorny Au NP obtained a higher maximum temperature than that of the spherical Au NP owing to a higher heat resource from the solar radiation in the thorns. In addition, a blended nanofluid with different thorny Au NPs showed a highest STC efficiency in all experimental samples that was as high as 85.8% by broadening its absorption spectra. It indicated that tuning the NP morphology or mixing different NPs could be efficient ways to improve the STC performance.
引用
收藏
页码:73 / 82
页数:10
相关论文
共 34 条
[1]  
[Anonymous], 2009, PRINCIPLES SURFACE E, DOI DOI 10.1016/B978-0-444-52779-0.00003-9
[2]   Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties [J].
Bastus, Neus G. ;
Merkoci, Florind ;
Piella, Jordi ;
Puntes, Victor .
CHEMISTRY OF MATERIALS, 2014, 26 (09) :2836-2846
[3]   Understanding the Photothermal Conversion Efficiency of Gold Nanocrystals [J].
Chen, Huanjun ;
Shao, Lei ;
Ming, Tian ;
Sun, Zhenhua ;
Zhao, Chunmei ;
Yang, Baocheng ;
Wang, Jianfang .
SMALL, 2010, 6 (20) :2272-2280
[4]   Numerically investigating the optical properties of plasmonic metallic nanoparticles for effective solar absorption and heating [J].
Chen, Meijie ;
He, Yurong ;
Wang, Xinzhi ;
Hu, Yanwei .
SOLAR ENERGY, 2018, 161 :17-24
[5]   Complementary enhanced solar thermal conversion performance of core shell nanoparticles [J].
Chen, Meijie ;
He, Yurong ;
Wang, Xinzhi ;
Hu, Yanwei .
APPLIED ENERGY, 2018, 211 :735-742
[6]   Investigation into Au nanofluids for solar photothermal conversion [J].
Chen, Meijie ;
He, Yurong ;
Huang, Jian ;
Zhu, Jiaqi .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 108 :1894-1900
[7]   Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors [J].
Chen, Meijie ;
He, Yurong ;
Zhu, Jiaqi ;
Wen, Dongsheng .
APPLIED ENERGY, 2016, 181 :65-74
[8]   Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes [J].
Chen, Meijie ;
He, Yurong ;
Zhu, Jiaqi ;
Kim, Dong Rip .
ENERGY CONVERSION AND MANAGEMENT, 2016, 112 :21-30
[9]   Nanosecond Photothermal Effects in Plasmonic Nanostructures [J].
Chen, Xi ;
Chen, Yiting ;
Yan, Min ;
Qiu, Min .
ACS NANO, 2012, 6 (03) :2550-2557
[10]   Nanoparticle enhanced spectral filtration of insolation from trough concentrators [J].
DeJarnette, Drew ;
Tunkara, Ebrima ;
Brekke, Nick ;
Otanicar, Todd ;
Roberts, Kenneth ;
Gao, Bo ;
Saunders, Aaron E. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 149 :145-153