Hasse principle for extraspecial p-groups

被引:9
作者
Kumar, M [1 ]
Vermani, LR [1 ]
机构
[1] Kurukshetra Univ, Dept Math, Kurukshetra 136119, Haryana, India
关键词
cocycle; coboundary; Hasse principle; central product; extraspecial p-groups;
D O I
10.3792/pjaa.76.123
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A group G is said to enjoy "Hasse principle" if every local coboundary of G is a global coboundary. It is proved that every non-Abelian finite p-group having a maximal subgroup which is cyclic and every extraspecial p-group enjoy "Hasse principle".
引用
收藏
页码:123 / 125
页数:3
相关论文
共 7 条
[1]   KOHOMOLOGISCHE TRIVIALITATEN UND AUSSERE AUTOMORPHISMEN VON P-GRUPPEN [J].
GASCHUTZ, W .
MATHEMATISCHE ZEITSCHRIFT, 1965, 88 (05) :432-&
[2]   NICHTABELSCHE P-GRUPPEN BESITZEN AUSSERE P-AUTOMORPHISMEN [J].
GASCHUTZ, W .
JOURNAL OF ALGEBRA, 1966, 4 (01) :1-&
[3]   Hasse principle for free groups [J].
Ono, T ;
Wada, H .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1999, 75 (01) :1-2
[4]   Hasse principle for symmetric and alternating groups [J].
Ono, T ;
Wada, H .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1999, 75 (04) :61-62
[5]   Shafarevich-Tate sets for profinite groups [J].
Ono, T .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1999, 75 (06) :96-97
[6]  
Suzuki M., 1986, Group Theory, V2
[7]  
Suzuki M., 1982, Group Theory, VI