On base sizes for actions of finite classical groups

被引:50
作者
Burness, Timothy C. [1 ]
机构
[1] Univ Oxford St Johns Coll, Oxford OX1 3JP, England
[2] Hebrew Univ Jerusalem, Math Inst, IL-91904 Jerusalem, Israel
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2007年 / 75卷
关键词
D O I
10.1112/jlms/jdm033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite almost simple classical group and let Omega be a faithful primitive non-standard G-set. A subset of Omega is a base for G if its pointwise stabilizer in G is trivial. Let b(G) be the minimal size of a base for G. A wellknown conjecture of Cameron and Kantor asserts that there exists an absolute constant c such that b(G) <= c for all such groups G, and the existence of such an undetermined constant has been established by Liebeck and Shalev. In this paper we prove that either b(G) <= 4, or G = U-6 (2) center dot 2, G(w) = U-4(3) center dot 2(2) and b(G) = 5. The proof is probabilistic, using bounds on fixed point ratios.
引用
收藏
页码:545 / 562
页数:18
相关论文
共 22 条
[1]  
[Anonymous], 1998, MATH SURVEYS MONOGRA
[2]  
[Anonymous], 2001, LMS J COMPUT MATH, DOI DOI 10.1112/S1461157000000796
[3]  
ASCHBACHER M, 1976, NAGOYA MATH J, V63, P1
[4]   ON THE MAXIMAL-SUBGROUPS OF THE FINITE CLASSICAL-GROUPS [J].
ASCHBACHER, M .
INVENTIONES MATHEMATICAE, 1984, 76 (03) :469-514
[5]  
BURNESS TC, 2007, BASE SIZES SIMPLE GR
[6]  
BURNESS TC, IN PRESS J ALGEBRA
[7]  
Burness TC, 2007, J ALGEBRA, V309, P80, DOI 10.1016/j.jalgebra.2006.05.025
[8]   Fixed point ratios in actions of finite classical groups, I [J].
Burness, Timothy C. .
JOURNAL OF ALGEBRA, 2007, 309 (01) :69-79
[9]  
Cameron P. J., 1993, Combin. Probab. Comput., V2, P257
[10]  
CAMERON PJ, 1992, LONDON MATH SOC LECT, V165, P340