Turan and Ramsey numbers for 3-uniform minimal paths of length 4

被引:0
作者
Han, Jie [1 ]
Polcyn, Joanna [2 ]
Rucinski, Andrzej [2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, 5 South Zhongguancun St, Beijing, Peoples R China
[2] Adam Mickiewicz Univ, Fac Math & Comp Sci, Ul Uniwersytetu Poznanskiego 4, Poznan, Poland
关键词
hypergraphs; paths; Ramsey number; Turan number; INTERSECTION-THEOREMS; SYSTEMS;
D O I
10.1002/jgt.22709
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine Turan numbers for the family of 3-uniform minimal paths of length four for all n. We also establish the second- and third-order Turan numbers and use them to compute the corresponding Ramsey numbers for up to four colors.
引用
收藏
页码:460 / 498
页数:39
相关论文
共 24 条
[1]   Multicolor Ramsey numbers for triple systems [J].
Axenovich, Maria ;
Gyarfas, Andras ;
Liu, Hong ;
Mubayi, Dhruv .
DISCRETE MATHEMATICS, 2014, 322 :69-77
[2]   INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS [J].
ERDOS, P ;
RADO, R ;
KO, C .
QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (48) :313-&
[3]   ON THE STRUCTURE OF LINEAR GRAPHS [J].
ERDOS, P ;
STONE, AH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (12) :1087-1091
[4]  
Erdos P., 1935, Compos. Math, V2, P463
[5]   EXACT SOLUTION OF THE HYPERGRAPH TURAN PROBLEM FOR K-UNIFORM LINEAR PATHS [J].
Fueredi, Zoltan ;
Jiang, Tao ;
Seiver, Robert .
COMBINATORICA, 2014, 34 (03) :299-322
[6]  
FUREDI Z., Personal communication
[7]  
Gyárfás A, 2012, ELECTRON J COMB, V19
[8]   THE MAXIMUM SIZE OF A NON-TRIVIAL INTERSECTING UNIFORM FAMILY THAT IS NOT A SUBFAMILY OF THE HILTON-MILNER FAMILY [J].
Han, Jie ;
Kohayakawa, Yoshiharu .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) :73-87
[9]   SOME INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS [J].
HILTON, AJW ;
MILNER, EC .
QUARTERLY JOURNAL OF MATHEMATICS, 1967, 18 (72) :369-&
[10]  
Jackowska E, 2017, ELECTRON J COMB, V24