Analysis and applications of pipe surfaces

被引:73
作者
Maekawa, T [1 ]
Patrikalakis, NM
Sakkalis, T
Yu, GX
机构
[1] MIT, Dept Ocean Engn, Design Lab, Cambridge, MA 02139 USA
[2] Agr Univ Athens, Dept Math, Athens 11855, Greece
关键词
pipe surface; local self-intersection; global self-intersection; rational parametrization;
D O I
10.1016/S0167-8396(97)00042-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A pipe (or tubular) surface is the envelope of a one-parameter family of spheres with constant radii r and centers C(t). In this paper we investigate necessary and sufficient conditions for the nonsingularity of pipe surfaces. In addition, when C(t) is a rational function, we develop an algorithmic method for the rational parametrization of such a surface. The latter is based on finding two rational functions alpha(t) and beta(t) such that /C'(t)/(2) = alpha(2)(t) + beta(2)(t) (Lu and Portmann, 1996). (C) 1998 Elsevier Science B.V.
引用
收藏
页码:437 / 458
页数:22
相关论文
共 19 条
[1]   Topologically reliable approximation of composite Bezier curves [J].
Cho, WJ ;
Maekawa, T ;
Patrikalakis, NM .
COMPUTER AIDED GEOMETRIC DESIGN, 1996, 13 (06) :497-520
[2]  
Do Carmo P. M, 1976, DIFFERENTIAL GEOMETR
[3]   Approximation of rolling ball blends for free form parametric surfaces [J].
Farouki, RAMT ;
Sverrisson, R .
COMPUTER-AIDED DESIGN, 1996, 28 (11) :871-878
[4]  
Hoschek J., 1993, Fundamentals of computer aided geometric design
[5]   Robust interval algorithm for curve intersections [J].
Hu, CY ;
Maekawa, T ;
Sherbrooke, EC ;
Patrikalakis, NM .
COMPUTER-AIDED DESIGN, 1996, 28 (6-7) :495-506
[6]  
Kreyszig E., 1959, DIFFERENTIAL GEOMETR
[7]   Pipe surfaces with rational spine curve are rational [J].
Lu, W ;
Pottmann, H .
COMPUTER AIDED GEOMETRIC DESIGN, 1996, 13 (07) :621-628
[8]   COMPUTATION OF SINGULARITIES AND INTERSECTIONS OF OFFSETS OF PLANAR CURVES [J].
MAEKAWA, T ;
PATRIKALAKIS, NM .
COMPUTER AIDED GEOMETRIC DESIGN, 1993, 10 (05) :407-429
[9]  
MAEKAWA T, 1997, ASME T, V119, P275
[10]  
MOISE EE, 1997, GEOMETRIC TOPOLOGY D