A new discrete-time robust stability conditions

被引:1125
作者
de Oliveira, MC
Bernussou, J
Geromel, JC
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, LAC DT, BR-13081970 Campinas, SP, Brazil
[2] CNRS, Automat Anal Syst Lab, F-31077 Toulouse 4, France
基金
巴西圣保罗研究基金会;
关键词
robust stability; parameter-dependent Lyapunov functions; linear matrix inequalities;
D O I
10.1016/S0167-6911(99)00035-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new robust stability condition for uncertain discrete-time systems with convex polytopic uncertainty is given. It enables to check stability using parameter-dependent Lyapunov functions which an derived from LMI conditions. It is shown that this new condition provides better results than the classical quadratic stability. Besides the use of a parameter-dependent Lyapunov function, this condition exhibits a kind of decoupling between the Lyapunov and the system matrices which may be explored for control synthesis purposes. A numerical example illustrates the results. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:261 / 265
页数:5
相关论文
共 11 条
[2]  
Battacharyya S., 1997, ROBUST CONTROL PARAM
[3]   A LINEAR-PROGRAMMING ORIENTED PROCEDURE FOR QUADRATIC STABILIZATION OF UNCERTAIN SYSTEMS [J].
BERNUSSOU, J ;
PERES, PLD ;
GEROMEL, JC .
SYSTEMS & CONTROL LETTERS, 1989, 13 (01) :65-72
[4]  
COLANERI P, 1997, CONTROL THEORY DESIG
[5]  
DEOLIVEIRA MC, IN PRESS LINEAR ALG
[6]  
FANS MKH, 1991, IEEE T AUTOMAT CONTR, V36, P25
[7]   Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions [J].
Feron, E ;
Apkarian, P ;
Gahinet, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (07) :1041-1046
[8]   Affine parameter-dependent Lyapunov functions and real parametric uncertainty [J].
Gahinet, P ;
Apkarian, P ;
Chilali, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (03) :436-442
[9]   STABILITY ROBUSTNESS OF INTERVAL MATRICES VIA LYAPUNOV QUADRATIC-FORMS [J].
GAROFALO, F ;
CELENTANO, G ;
GLIELMO, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (02) :281-284
[10]   Robust stabilization for discrete-time systems with slowly time-varying uncertainty [J].
Haddad, WM ;
Kapila, V .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1996, 333B (01) :71-84