A study of predicting irradiation-induced transition temperature shift for RPV steels with XGBoost modeling

被引:25
作者
Xu, Chaoliang [1 ]
Liu, Xiangbing [1 ]
Wang, Hongke [1 ]
Li, Yuanfei [1 ]
Jia, Wenqing [1 ]
Qian, Wangjie [1 ]
Quan, Qiwei [1 ]
Zhang, Huajian [1 ]
Xue, Fei [1 ]
机构
[1] Suzhou Nucl Power Res Inst, Suzhou 215004, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
RPV; Irradiation embrittlement; XGBoost; Prediction model; NEURAL-NETWORK ANALYSIS;
D O I
10.1016/j.net.2021.02.015
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The prediction of irradiation-induced transition temperature shift for RPV steels is an important method for long term operation of nuclear power plant. Based on the irradiation embrittlement data, an irradiation-induced transition temperature shift prediction model is developed with machine learning method XGBoost. Then the residual, standard deviation and predicted value vs. measured value analysis are conducted to analyze the accuracy of this model. At last, Cu content threshold and saturation values analysis, temperature dependence, Ni/Cu dependence and flux effect are given to verify the reliability. Those results show that the prediction model developed with XGBoost has high accuracy for predicting the irradiation embrittlement trend of RPV steel. The prediction results are consistent with the current understanding of RPV embrittlement mechanism. (c) 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:2610 / 2615
页数:6
相关论文
共 20 条
[1]  
[Anonymous], 2007, ASTM E 900-02
[2]  
[Anonymous], ASTM STP
[3]  
[Anonymous], 1991, JEAC 4201
[4]  
[Anonymous], 1998, NUREGCR 6551
[5]   Irradiation temperature, flux and spectrum effects [J].
Ballesteros, A. ;
Ahlstrand, R. ;
Bruynooghe, C. ;
Chernobaeva, A. ;
Kevorkyan, Y. ;
Erak, D. ;
Zurko, D. .
PROGRESS IN NUCLEAR ENERGY, 2011, 53 (06) :756-759
[6]   Prediction of radiation induced hardening of reactor pressure vessel steels using artificial neural networks [J].
Castin, N. ;
Malerba, L. ;
Chaouadi, R. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 408 (01) :30-39
[7]  
Chen Tianqi, 2015, R PACKAGE VERSION 04, V1, P1
[8]   Neural network analysis of Charpy transition temperature of irradiated low-activation martensitic steels [J].
Cottrell, G. A. ;
Kemp, R. ;
Bhadeshia, H. K. D. H. ;
Odette, G. R. ;
Yamamoto, T. .
JOURNAL OF NUCLEAR MATERIALS, 2007, 367 :603-609
[9]   Effect of irradiation temperature in PWR RPV materials and its inclusion in semi-mechanistic model [J].
Debarberis, L ;
Acosta, B ;
Zeman, A ;
Sevini, F ;
Ballesteros, A ;
Kryukov, A ;
Gillemot, F ;
Brumovsky, M .
SCRIPTA MATERIALIA, 2005, 53 (06) :769-773
[10]   A physically-based correlation of irradiation-induced transition temperature shifts for RPV steels [J].
Eason, E. D. ;
Odette, G. R. ;
Nanstad, R. K. ;
Yamamoto, T. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 433 (1-3) :240-254