Imperfect Fluid Generalized Robertson Walker Spacetime Admitting Ricci-Yamabe Metric

被引:7
作者
Alkhaldi, Ali H. [1 ]
Siddiqi, Mohd Danish [2 ]
Khan, Meraj Ali [3 ]
Alqahtani, Lamia Saeed [4 ]
机构
[1] King Khalid Univ, Dept Math, Coll Sci, POB 9004, Abha, Saudi Arabia
[2] Jazan Univ, Dept Math, Coll Sci, Jazan, Saudi Arabia
[3] Univ Tabuk Univ, Dept Math, Coll Sci, Tabuk, Saudi Arabia
[4] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
关键词
MASSLESS PARTICLES; GRADIENT; SOLITONS;
D O I
10.1155/2021/2485804
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present paper, we investigate the nature of Ricci-Yamabe soliton on an imperfect fluid generalized Robertson-Walker spacetime with a torse-forming vector field xi. Furthermore, if the potential vector field xi of the Ricci-Yamabe soliton is of the gradient type, the Laplace-Poisson equation is derived. Also, we explore the harmonic aspects of eta-Ricci-Yamabe soliton on an imperfect fluid GRW spacetime with a harmonic potential function psi. Finally, we examine necessary and sufficient conditions for a 1-form eta, which is the g-dual of the vector field xi on imperfect fluid GRW spacetime to be a solution of the Schrodinger-Ricci equation.
引用
收藏
页数:10
相关论文
共 47 条
[1]   Concircular Curvature Tensor and Fluid Spacetimes [J].
Ahsan, Zafar ;
Siddiqui, Shah Alam .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (11) :3202-3212
[2]  
Ali M., 2014, J. Adv. Res. Classical Mod. Geom., V1, P75
[3]  
Alias L, 1995, Gen Relativ. Gravit, V30, P915
[4]  
[Anonymous], 1996, LECT GIVEN HANNO RUN
[5]  
Asenjo F.A., 2017, PHYS REV D, V96
[6]   Massless particles in warped three spaces [J].
Barros, M ;
Caballero, M ;
Ortega, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (03) :461-473
[7]  
Biskamp D., 2000, RECONNECTION PLASMA
[8]   ON GRADIENT eta-EINSTEIN SOLITONS [J].
Blaga, A. M. .
KRAGUJEVAC JOURNAL OF MATHEMATICS, 2018, 42 (02) :229-237
[9]   SOLITONS AND GEOMETRICAL STRUCTURES IN A PERFECT FLUID SPACETIME [J].
Blaga, Adara M. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (01) :41-53
[10]   Harmonic Aspects in an η-Ricci Soliton [J].
Blaga, Adara M. .
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2020, 13 (01) :41-49