National Empirical Models of Air Pollution Using Microscale Measures of the Urban Environment

被引:28
作者
Lu, Tianjun [7 ]
Marshall, Julian D. [1 ]
Zhang, Wenwen [2 ]
Hystad, Perry [3 ]
Kim, Sun-Young [4 ]
Bechle, Matthew J. [1 ]
Demuzere, Matthias [5 ]
Hankey, Steve [6 ]
机构
[1] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
[2] Rutgers State Univ, Edward J Bloustein Sch Planning & Publ Policy, New Brunswick, NJ 08901 USA
[3] Oregon State Univ, Coll Publ Hlth & Human Sci, Corvallis, OR 97331 USA
[4] Natl Canc Ctr, Grad Sch Canc Sci & Policy, Dept Canc Control & Populat Hlth, Goyang Si 10408, South Korea
[5] Ruhr Univ Bochum, Dept Geog, Urban Climatol Grp, D-44801 Bochum, Germany
[6] Virginia Tech, Sch Publ & Int Affairs, Blacksburg, VA 24061 USA
[7] Calif State Univ Dominguez Hills, Dept Earth Sci & Geog, Carson, CA 90747 USA
关键词
Empirical models; street-level features; urban form; exposure assessment; machine learning; LAND-USE REGRESSION; GOOGLE STREET VIEW; EXPOSURE ASSESSMENT; ULTRAFINE PARTICLES; BLACK CARBON; PM2.5; NUMBER; CANADA; OXIDES;
D O I
10.1021/acs.est.1c04047
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
National-scale empirical models of air pollution (e.g., Land Use Regression) rely on predictor variables (e.g., population density, land cover) at different geographic scales. These models typically lack microscale variables (e.g., street level), which may improve prediction with fine-spatial gradients. We developed microscale variables of the urban environment including Point of Interest (POI) data, Google Street View (GSV) imagery, and satellite-based measures of urban form. We developed United States national models for six criteria pollutants (NO2, PM2.5, O-3, CO, PM10, SO2) using various modeling approaches: Stepwise Regression + kriging (SW-K), Partial Least Squares + kriging (PLS-K), and Machine Learning + kriging (ML-K). We compared predictor variables (e.g., traditional vs microscale) and emerging modeling approaches (ML-K) to well-established approaches (i.e., traditional variables in a PLS-K or SW-K framework). We found that combined predictor variables (traditional + microscale) in the ML-K models outperformed the well-established approaches (10-fold spatial cross-validation (CV) R-2 increased 0.02-0.42 [average: 0.19] among six criteria pollutants). Comparing all model types using microscale variables to models with traditional variables, the performance is similar (average difference of 10-fold spatial CV R-2 = 0.05) suggesting microscale variables are a suitable substitute for traditional variables. ML-K and microscale variables show promise for improving national empirical models.
引用
收藏
页码:15519 / 15530
页数:12
相关论文
共 64 条
[1]   Spatiotemporal Modeling of Ozone Levels in Quebec (Canada): A Comparison of Kriging, Land-Use Regression (LUR), and Combined Bayesian Maximum Entropy-LUR Approaches [J].
Adam-Poupart, Ariane ;
Brand, Allan ;
Fournier, Michel ;
Jerrett, Michael ;
Smargiassi, Audrey .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2014, 122 (09) :970-976
[2]  
[Anonymous], 2020, CENS REG DIV US
[3]   High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data [J].
Apte, Joshua S. ;
Messier, Kyle P. ;
Gani, Shahzad ;
Brauer, Michael ;
Kirchstetter, Thomas W. ;
Lunden, Melissa M. ;
Marshall, Julian D. ;
Portier, Christopher J. ;
Vermeulen, Roel C. H. ;
Hamburg, Steven P. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (12) :6999-7008
[4]   National Spatiotemporal Exposure Surface for NO2: Monthly Scaling of a Satellite-Derived Land-Use Regression, 2000-2010 [J].
Bechle, Matthew J. ;
Millet, Dylan B. ;
Marshall, Julian D. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (20) :12297-12305
[5]   A Hybrid Approach to Estimating National Scale Spatiotemporal Variability of PM2.5 in the Contiguous United States [J].
Beckerman, Bernardo S. ;
Jerrett, Michael ;
Serre, Marc ;
Martin, Randall V. ;
Lee, Seung-Jae ;
van Donkelaar, Aaron ;
Ross, Zev ;
Su, Jason ;
Burnett, Richard T. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (13) :7233-7241
[6]   A systematic review of data mining and machine learning for air pollution epidemiology [J].
Bellinger, Colin ;
Jabbar, Mohomed Shazan Mohomed ;
Zaiane, Osmar ;
Osornio-Vargas, Alvaro .
BMC PUBLIC HEALTH, 2017, 17
[7]   An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument [J].
Boersma, K. F. ;
Eskes, H. J. ;
Dirksen, R. J. ;
van der A, R. J. ;
Veefkind, J. P. ;
Stammes, P. ;
Huijnen, V. ;
Kleipool, Q. L. ;
Sneep, M. ;
Claas, J. ;
Leitao, J. ;
Richter, A. ;
Zhou, Y. ;
Brunner, D. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2011, 4 (09) :1905-1928
[8]   Can we use local climate zones for predicting malaria prevalence across sub-Saharan African cities? [J].
Brousse, O. ;
Georganos, S. ;
Demuzere, M. ;
Dujardin, S. ;
Lennert, M. ;
Linard, C. ;
Snow, R. W. ;
Thiery, W. ;
van Lipzig, N. P. M. .
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (12)
[9]   National Patterns in Environmental Injustice and Inequality: Outdoor NO2 Air Pollution in the United States [J].
Clark, Lara P. ;
Millet, Dylan B. ;
Marshall, Julian D. .
PLOS ONE, 2014, 9 (04)
[10]  
Coleman NC, 2020, ENVIRON HEALTH PERSP, V128, DOI [10.1289/EHIP7246, 10.1289/EHP7246]