BOUNDEDNESS AND PERSISTENCE OF POPULATIONS IN ADVECTIVE LOTKA-VOLTERRA COMPETITION SYSTEM

被引:3
作者
Wang, Qi [1 ]
Song, Yang [1 ]
Shao, Lingjie [1 ]
机构
[1] Southwestern Univ Finance & Econ, Dept Math, 555 Liutai Ave, Chengdu 611130, Sichuan, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2018年 / 23卷 / 06期
关键词
Lotka-Volterra competition system; global solution; persistence; DIRICHLET BOUNDARY-CONDITIONS; DIFFUSION SYSTEM; DOMAINS; MODEL; STATES; LIMIT;
D O I
10.3934/dcdsb.2018195
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with a two-component reaction-advection- diffusion Lotka-Volterra competition system with constant diffusion rates subject to homogeneous Neumann boundary conditions. We first prove the global existence and uniform boundedness of positive classical solutions to this system. This result complements some of the global existence results in [Y. Lou, M. Winkler and Y. Tao , SIAM J. Math. Anal., 46 (2014), 1228-1262.], where one diffusion rate is taken to be a linear function of the population density. Our second result proves that the total population of each species admits a positive lower bound, under some conditions of system parameters (e.g., when the intraspecific competition rates are large). This result of population persistence indicates that the two competing species coexist over the habitat in a long time.
引用
收藏
页码:2245 / 2263
页数:19
相关论文
共 24 条
[1]  
Amann H., 1993, Function Spaces, Diff. Operators and Nonlinear Anal, P9, DOI [10.1007/978-3-663- 11336-2_1, DOI 10.1007/978-3-663-11336-21]
[2]  
[Anonymous], preprint
[3]  
CANTRELL RS, 1989, HOUSTON J MATH, V15, P341
[4]  
Conway E.D., 1977, COMMUN PART DIFF EQ, V2, P679, DOI DOI 10.1080/03605307708820045
[5]   STABLE COEXISTENCE STATES IN THE VOLTERRA-LOTKA COMPETITION MODEL WITH DIFFUSION [J].
COSNER, C ;
LAZER, AC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1984, 44 (06) :1112-1132
[6]  
Crooks ECM, 2007, DISCRETE CONT DYN-B, V8, P39
[7]   Spatial segregation limit of a competition-diffusion system with Dirichlet boundary conditions [J].
Crooks, ECM ;
Dancer, EN ;
Hilhorst, D ;
Mimura, M ;
Ninomiya, H .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2004, 5 (04) :645-665
[8]   Competitive exclusion and persistence in models of resource and sexual competition [J].
Feng, W .
JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 35 (06) :683-694
[9]  
Iida M., 1998, Jpn J Ind Appl Math, V15, P233
[10]   Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains [J].
Ishida, Sachiko ;
Seki, Kiyotaka ;
Yokota, Tomomi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (08) :2993-3010