A Derivative-Hilbert operator acting on Bergman spaces

被引:16
|
作者
Ye, Shanli [1 ]
Zhou, Zhihui [1 ]
机构
[1] Zhejiang Univ Sci & Technol, Sch Sci, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
Hankel matrix; Bergman space; Carleson measure; BLOCH FUNCTIONS; MATRIX; HARDY;
D O I
10.1016/j.jmaa.2021.125553
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let h(mu) be the Hankel matrix with entries mu n,k = f[0,1)(n + 1)tn+kd mu(t), where mu is a positive Borel measure on the interval [0,1). The matrix acts on the space of all analytic functions in the unit disk by multiplication on Taylor coefficients and induces formally the operator DH mu(f)(z) = Sigma(infinity)(n=0) (Sigma(infinity)(k =0) mu(n),(k)a(k))z(n), where f (z) = E(n=0)(infinity)a(n)z(n) is an analytic function in D. In this paper, we characterize the measures mu for which DH mu is a bounded (resp., compact) operator from the Bergman space Ap (0 < p infinity) into the space A(q) (q >= p and q > 1), or from Ap (0 < p <= 1) into A(1). (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条