A note on the time-dependent Ginzburg-Landau model for superconductivity in Rn

被引:3
作者
Fan, Jishan [1 ]
Zhou, Yong [2 ]
机构
[1] Nanjing Forestry Univ, Dept Appl Math, Nanjing 210037, Peoples R China
[2] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
关键词
Ginzburg-Landau; Smooth solutions; Regularity criterion; WEAK SOLUTIONS; EQUATIONS;
D O I
10.1016/j.aml.2020.106208
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we prove the global well-posedness of strong solutions to the time-dependent Ginzburg Landau model for superconductivity in Ifln with 5 <= n <= 17. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 14 条
  • [1] Justification of a two dimensional evolutionary Ginzburg-Landau superconductivity model
    Chen, ZM
    Elliot, CM
    Qi, T
    [J]. RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1998, 32 (01): : 25 - 50
  • [2] ON A NONSTATIONARY GINZBURG-LANDAU SUPERCONDUCTIVITY MODEL
    CHEN, ZM
    HOFFMANN, KH
    LIANG, J
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1993, 16 (12) : 855 - 875
  • [3] Fan J, 2019, PREPRINT
  • [4] Global Well-posedness of Weak Solutions to the Time-dependent Ginzburg-Landau Model for Superconductivity
    Fan, Jishan
    Ozawa, Tohru
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (04): : 851 - 858
  • [5] Uniform regularity for a 3D time-dependent Ginzburg-Landau model in superconductivity
    Fan, Jishan
    Samet, Bessem
    Zhou, Yong
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (09) : 3244 - 3248
  • [6] Uniqueness of Weak Solutions to the 3D Ginzburg-Landau Superconductivity Model
    Fan, Jishan
    Gao, Hongjun
    Guo, Boling
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (05) : 1239 - 1246
  • [7] Uniqueness of weak solutions in critical space of the 3-D time-dependent Ginzburg-Landau equations for superconductivity
    Fan, Jishan
    Gao, Hongjun
    [J]. MATHEMATISCHE NACHRICHTEN, 2010, 283 (08) : 1134 - 1143
  • [8] Global existence of weak solutions of a time-dependent 3-D Ginzburg-Landau model for superconductivity
    Fan, JS
    Jiang, S
    [J]. APPLIED MATHEMATICS LETTERS, 2003, 16 (03) : 435 - 440
  • [9] Cauchy problem for the Ginzburg-Landau equation for the superconductivity model
    Guo, BL
    Yuan, GW
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 : 1181 - 1192
  • [10] Kasai H., 2000, FUNKC EKVACIOJ-SER I, V43, P255