Inference in randomized studies with informative censoring and discrete time-to-event endpoints

被引:37
|
作者
Scharfstein, D [1 ]
Robins, JM
Eddings, W
Rotnitzky, A
机构
[1] Johns Hopkins Sch Hyg & Publ Hlth, Dept Biostat, Baltimore, MD 21025 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[3] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
关键词
coarsening at random; competing risks; curse of dimensionality; inverse probability of censoring weighted estimation; Kaplan-Meier estimator; sequential ignorability of censoring;
D O I
10.1111/j.0006-341X.2001.00404.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article. we present a method for estimating and comparing the treatment-specific distributions of a discrete time-to-event variable from right-censored data. Our method allows for (1) adjustment for informative censoring due to measured prognostic factors for time to event and censoring and (2) quantification of the sensitivity of the inference to residual dependence between time to event and censoring due to unmeasured factors. We develop our approach in the context of a randomized trial for the treatment of chronic schizophrenia. We perform a simulation study to assess the practical performance of our methodology.
引用
收藏
页码:404 / 413
页数:10
相关论文
共 50 条
  • [1] Methods for Informative Censoring in Time-to-Event Data Analysis
    Jin, Man
    Fang, Yixin
    STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2024, 16 (01): : 47 - 54
  • [2] A Bayesian model for time-to-event data with informative censoring
    Kaciroti, Niko A.
    Raghunathan, Trivellore E.
    Taylor, Jeremy M. G.
    Julius, Stevo
    BIOSTATISTICS, 2012, 13 (02) : 341 - 354
  • [3] Time-to-Event Endpoints in Imaging Biomarker Studies
    Chen, Ruizhe
    Wang, Hao
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2025, 61 (02) : 561 - 567
  • [4] Performance of Cox regression models for composite time-to-event endpoints with component-wise censoring in randomized trials
    Speiser, Jaime Lynn
    Ambrosius, Walter T.
    Pajewski, Nicholas M.
    CLINICAL TRIALS, 2023, 20 (05) : 507 - 516
  • [5] Parametric inference of non-informative censored time-to-event data
    Guure, Chris Bambey
    Ibrahim, Noor Alum
    Bosomprah, Samuel
    SCIENCEASIA, 2014, 40 (03): : 257 - 262
  • [6] Evaluating time-to-event surrogates for time-to-event true endpoints: an information-theoretic approach based on causal inference
    Stijven, Florian
    Molenberghs, Geert
    Van Keilegom, Ingrid
    van der Elst, Wim
    Alonso, Ariel
    LIFETIME DATA ANALYSIS, 2025, 31 (01) : 1 - 23
  • [7] A Multiple Imputation Method for Sensitivity Analyses of Time-to-Event Data with Possibly Informative Censoring
    Zhao, Yue
    Herring, Amy H.
    Zhou, Haibo
    Ali, Mirza W.
    Koch, Gary G.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2014, 24 (02) : 229 - 253
  • [8] Designing phase II studies in cancer with time-to-event endpoints
    Owzar, Kouros
    Jung, Sin-Ho
    CLINICAL TRIALS, 2008, 5 (03) : 209 - 221
  • [9] Adjusted estimates for time-to-event endpoints
    Storer, Barry E.
    Gooley, Ted A.
    Jones, Michael P.
    LIFETIME DATA ANALYSIS, 2008, 14 (04) : 484 - 495
  • [10] Adjusted estimates for time-to-event endpoints
    Barry E. Storer
    Ted A. Gooley
    Michael P. Jones
    Lifetime Data Analysis, 2008, 14 : 484 - 495