A CONDITIONAL GENERATIVE ADVERSARIAL NETWORK TO FUSE SAR AND MULTISPECTRAL OPTICAL DATA FOR CLOUD REMOVAL FROM SENTINEL-2 IMAGES

被引:0
|
作者
Grohnfeldt, Claas [1 ]
Schmitt, Michael [1 ]
Zhu, Xiaoxiang [1 ,2 ]
机构
[1] Tech Univ Munich, Signal Proc Earth Observat, Munich, Germany
[2] German Aerosp Ctr DLR, Remote Sensing Technol Inst IMF, Wessling, Germany
来源
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2018年
关键词
SAR; optical remote sensing; data fusion; deep learning; generative adversarial network (GAN); cloud-removal;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present the first conditional generative adversarial network (cGAN) architecture that is specifically designed to fuse synthetic aperture radar (SAR) and optical multi-spectral (MS) image data to generate cloud-and haze-free MS optical data from a cloud-corrupted MS input and an auxiliary SAR image. Experiments on Sentinel-2 MS and Sentinel-1 SAR data confirm that our extended SAR-Opt-cGAN model utilizes the auxiliary SAR information to better reconstruct MS images than an equivalent model which uses the same architecture but only single-sensor MS data as input.
引用
收藏
页码:1726 / 1729
页数:4
相关论文
共 50 条
  • [1] Synthesis of Multispectral Optical Images From SAR/Optical Multitemporal Data Using Conditional Generative Adversarial Networks
    Bermudez, Jose D.
    Happ, Patrick N.
    Feitosa, Raul Q.
    Oliveira, Dario A. B.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (08) : 1220 - 1224
  • [2] Deriving Non-Cloud Contaminated Sentinel-2 Images with RGB and Near-Infrared Bands from Sentinel-1 Images Based on a Conditional Generative Adversarial Network
    Xiong, Quan
    Di, Liping
    Feng, Quanlong
    Liu, Diyou
    Liu, Wei
    Zan, Xuli
    Zhang, Lin
    Zhu, Dehai
    Liu, Zhe
    Yao, Xiaochuang
    Zhang, Xiaodong
    REMOTE SENSING, 2021, 13 (08)
  • [3] Sentinel-2 Cloud Removal Considering Ground Changes by Fusing Multitemporal SAR and Optical Images
    Gao, Jianhao
    Yi, Yang
    Wei, Tang
    Zhang, Guanhao
    REMOTE SENSING, 2021, 13 (19)
  • [4] Filmy Cloud Removal on Satellite Imagery with Multispectral Conditional Generative Adversarial Nets
    Enomoto, Kenji
    Sakurada, Ken
    Wang, Weimin
    Fukui, Hiroshi
    Matsuoka, Masashi
    Nakamura, Ryosuke
    Kawaguchi, Nobuo
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 1533 - 1541
  • [5] Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion
    Meraner, Andrea
    Ebel, Patrick
    Zhu, Xiao Xiang
    Schmitt, Michael
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 166 (166) : 333 - 346
  • [6] Cloud Removal with Fusion of High Resolution Optical and SAR Images Using Generative Adversarial Networks
    Gao, Jianhao
    Yuan, Qiangqiang
    Li, Jie
    Zhang, Hai
    Su, Xin
    REMOTE SENSING, 2020, 12 (01)
  • [7] CLOUD-GAN: CLOUD REMOVAL FOR SENTINEL-2 IMAGERY USING A CYCLIC CONSISTENT GENERATIVE ADVERSARIAL NETWORKS
    Singh, Praveer
    Komodakis, Nikos
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1772 - 1775
  • [8] SAR TO OPTICAL IMAGE SYNTHESIS FOR CLOUD REMOVAL WITH GENERATIVE ADVERSARIAL NETWORKS
    Bermudez, J. D.
    Happ, P. N.
    Oliveira, D. A. B.
    Feitosa, R. Q.
    ISPRS TC I MID-TERM SYMPOSIUM INNOVATIVE SENSING - FROM SENSORS TO METHODS AND APPLICATIONS, 2018, 4-1 : 5 - 11
  • [9] Cloud removal from satellite imagery using multispectral edge-filtered conditional generative adversarial networks
    Hasan, Cengis
    Horne, Ross
    Mauw, Sjouke
    Mizera, Andrzej
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (05) : 1881 - 1893
  • [10] Combining Conditional Generative Adversarial Network and Regression-based Calibration for Cloud Removal of Optical Imagery
    Kwak, Geun-Ho
    Park, Soyeon
    Park, No-Wook
    KOREAN JOURNAL OF REMOTE SENSING, 2022, 38 (06) : 1357 - 1369