Residual-based a posteriori error estimation for the Maxwell's eigenvalue problem

被引:10
作者
Boffi, Daniele [1 ]
Gastaldi, Lucia [2 ]
Rodriguez, Rodolfo [3 ]
Sebestova, Ivana [3 ]
机构
[1] Univ Pavia, Dipartimento Matemat F Casorati, I-27100 Pavia, Italy
[2] Univ Brescia, Dipartimento Ingn Civile Architettura Terr Ambien, I-25123 Brescia, BS, Italy
[3] Univ Concepcion, Ctr Invest Ingn Matemat, Dept Ingn Matemat, Casilla 160-C, Concepcion, Chile
关键词
a posteriori error estimate; Maxwell's eigenvalue problem; Nedelec finite elements; mixed formulation; FINITE-ELEMENT APPROXIMATIONS; DISCRETE COMPACTNESS; EQUATIONS; CONVERGENCE; STRATEGY;
D O I
10.1093/imanum/drw066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an a posteriori estimator of the error in the L-2-norm for the numerical approximation of the Maxwell's eigenvalue problem by means of Nedelec finite elements. Our analysis is based on a Helmholtz decomposition of the error and on a superconvergence result between the L-2-orthogonal projection of the exact eigenfunction onto the curl of the Nedelec finite element space and the eigenfunction approximation. Reliability of the a posteriori error estimator is proved up to higher order terms, and local efficiency of the error indicators is shown by using a standard bubble functions technique. The behavior of the a posteriori error estimator is illustrated on a numerical test.
引用
收藏
页码:1710 / 1732
页数:23
相关论文
共 41 条
[1]   Accurate pressure post-process of a finite element method for elastoacoustics [J].
Alonso, A ;
Dello Russo, A ;
Padra, C ;
Rodríguez, R .
NUMERISCHE MATHEMATIK, 2004, 98 (03) :389-425
[2]   A posteriori error estimates and a local refinement strategy for a finite element method to solve structural-acoustic vibration problems [J].
Alonso, A ;
Dello Russo, A ;
Padra, C ;
Rodríguez, R .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 15 (1-4) :25-59
[3]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[4]  
2-B
[5]  
[Anonymous], 2013, SERIES COMPUTATIONAL
[6]  
[Anonymous], 2007, J MATH SCI NY
[7]   Residual based a posteriori error estimators for eddy current computation [J].
Beck, R ;
Hiptmair, R ;
Hoppe, RHW ;
Wohlmuth, B .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (01) :159-182
[8]   Computational models of electromagnetic resonators: Analysis of edge element approximation [J].
Boffi, D ;
Fernandes, P ;
Gastaldi, L ;
Perugia, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (04) :1264-1290
[9]  
Boffi D, 2000, NUMER MATH, V87, P229, DOI 10.1007/S002110000182
[10]  
Boffi D., 2015, MATH COMP IN PRESS