Analytical-function correction to the Hartmann-Tran profile for more reliable representation of the Dicke-narrowed molecular spectra

被引:21
作者
Konefal, M. [1 ,2 ]
Slowinski, M. [1 ]
Zaborowski, M. [1 ]
Ciurylo, R. [1 ]
Lisak, D. [1 ]
Wcislo, P. [1 ]
机构
[1] Nicolaus Copernicus Univ Torun, Fac Phys Astron & Informat, Inst Phys, Ul Grudziadzka 5, PL-87100 Torun, Poland
[2] Univ Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
关键词
Velocity-changing collisions; Hartmann-Tran profile; HTP; Speed-dependent billiard-ball profile; beta correction; Atmospheric molecular systems; LINE-SHAPES; CHANGING COLLISIONS; SPEED; LINESHAPE; PRESSURE; DOPPLER; SHIFT;
D O I
10.1016/j.jqsrt.2019.106784
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The beta-corrected Hartmann-Tran profile (HTP) constitutes an approximation of the partially correlated quadratic speed-dependent billiard-ball profile (SDBBP) easily applicable in calculations. We extend the approach originally developed for self-perturbed molecules [Wcislo et al. J. Quant. Spectrosc. Radiat. Transf. 177, 75-91 (2016)] to systems with a wide range of perturber-to-absorber mass ratios, including those relevant for atmospheric studies. This approach combines the computational simplicity of the HTP with the more physically justified rigid-sphere model for velocity-changing collisions. It is important for the analysis of high-resolution spectra influenced by the Dicke-narrowing effect. The beta-corrected HTP enables high quality analytical representation of experimental spectra without incurring the high computational cost of more advanced line-shape models. This correction is directly applicable to any other line-shape model based on the hard-collision model for velocity-changing collisions. (C) 2019 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:5
相关论文
共 36 条
[1]   A MULTISPECTRUM NONLINEAR LEAST-SQUARES FITTING TECHNIQUE [J].
BENNER, DC ;
RINSLAND, CP ;
DEVI, VM ;
SMITH, MAH ;
ATKINS, D .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1995, 53 (06) :705-721
[2]  
BERMAN PR, 1972, J QUANT SPECTROSC RA, V12, P1331, DOI 10.1016/0022-4073(72)90189-6
[3]   Spectroscopic measurement of the vapour pressure of ice [J].
Bielska, K. ;
Havey, D. K. ;
Scace, G. E. ;
Lisak, D. ;
Hodges, J. T. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1968) :2509-2519
[4]   A MODIFIED BOLTZMANN KINETIC-EQUATION FOR LINE-SHAPE FUNCTIONS [J].
BLACKMORE, R .
JOURNAL OF CHEMICAL PHYSICS, 1987, 87 (02) :791-800
[5]   Stochastic problems in physics and astronomy [J].
Chandrasekhar, S .
REVIEWS OF MODERN PHYSICS, 1943, 15 (01) :0001-0089
[6]   Role of velocity- and speed-changing collisions on speed-dependent line shapes of H2 -: art. no. 032701 [J].
Ciurylo, R ;
Lisak, D ;
Szudy, J .
PHYSICAL REVIEW A, 2002, 66 (03) :3
[7]   Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. II. Application [J].
Ciurylo, R ;
Shapiro, DA ;
Drummond, JR ;
May, AD .
PHYSICAL REVIEW A, 2002, 65 (01) :125021-125028
[8]   Speed-dependent pressure broadening and shift in the soft collision approximation [J].
Ciurylo, R ;
Szudy, J .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1997, 57 (03) :411-423
[9]   THE EFFECT OF COLLISIONS UPON THE DOPPLER WIDTH OF SPECTRAL LINES [J].
DICKE, RH .
PHYSICAL REVIEW, 1953, 89 (02) :472-473
[10]   Dicke narrowing as an example of line mixing [J].
Dolbeau, S ;
Berman, R ;
Drummond, JR ;
May, AD .
PHYSICAL REVIEW A, 1999, 59 (05) :3506-3512