Krasnoselskii's fixed point theorem for weakly continuous maps

被引:52
作者
Barroso, CS [1 ]
机构
[1] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
关键词
fixed points; weakly continuous maps; Krasnoselskii; Dirichlet problem; eigenvalue problem; integral equations;
D O I
10.1016/S0362-546X(03)00208-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the sum A + B: M --> X, where M is a weakly compact and convex subset of a Banach space X, A: M --> X is weakly continuous, and B is an element of L(X) with parallel toB(p)parallel to less than or equal to 1, p greater than or equal to 1. An alternative condition is given in order to guarantee the existence of fixed points in M for A + B. Some illustrative applications are given. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:25 / 31
页数:7
相关论文
共 9 条
[1]  
Brezis H., 1999, Analyse fonctionnelle: Theorie et applications
[2]   Krasnoselskii's fixed point theorem and stability [J].
Burton, TA ;
Furumochi, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 49 (04) :445-454
[3]  
BURTON TA, 1997, APPL MATH LETT, V11, P85
[4]  
Gilbar D., 1983, ELLIPTIC PARTIAL DIF
[5]  
Krasnoselskii M. A., 1958, AM MATH SOC TRANSL, V10, P345
[6]   Weak convergence under nonlinearities [J].
Moreira, DR ;
Teixeira, EVO .
ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2003, 75 (01) :9-19
[7]   Fixed-point theory for the sum of two operators [J].
ORegan, D .
APPLIED MATHEMATICS LETTERS, 1996, 9 (01) :1-8
[8]  
Pazy A., 1983, SEMIGROUPS LINEAR OP, DOI [10.1007/978-1-4612-5561-1, DOI 10.1007/978-1-4612-5561-1]
[9]  
Rudin W., 1973, FUNCTIONAL ANAL