Existence conditions for discrete noncanonical multiwindow gabor schemes

被引:7
|
作者
Subbanna, Nagesh K. [1 ]
Zeevi, Yehoshua Y. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Biomed Engn, IL-32000 Haifa, Israel
关键词
block circulant matrices; frames; multiwindow Gabor transforms; Zak transforms;
D O I
10.1109/TSP.2007.896100
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A class of noncanonical duals for multiwindow Gabor (MWG) schemes, encompassing both rational and integer oversampling of the Gaborian combined time-frequency space, is considered. Using properties of Gabor frame matrices (GFM), block discrete Fourier transforms (BDFTs), and results from number theory, we use matrix factorization to establish existence conditions for noncanonical duals for both integer and rational oversampling rates, in the signal domain. For comparison and completeness of the results, we also obtain the equivalent results in the finite Zak transform (FZT) domain.
引用
收藏
页码:5113 / 5117
页数:5
相关论文
共 14 条
  • [1] Weighted multiwindow discrete Gabor transform
    Li, Rui
    Kwan, Hon Keung
    DIGITAL SIGNAL PROCESSING, 2021, 117
  • [2] Fast Approach for Analysis Windows Computation of Multiwindow Discrete Gabor Transform
    Li, Rui
    Liu, Jia-Bao
    IEEE ACCESS, 2018, 6 : 45681 - 45689
  • [3] Sparse time-frequency representation based on multiwindow discrete Gabor transform
    Li, Rui
    Zhou, Jian
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2018, 16 (05)
  • [4] Parallel Lattice Structure for Dual Windows Computation in Multiwindow Gabor Transform
    Li, Rui
    Kwan, Hon Keung
    IEEE ACCESS, 2019, 7 : 152722 - 152728
  • [5] The existence of tight Gabor duals for Gabor frames and subspace Gabor frames
    Han, Deguang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (01) : 129 - 148
  • [6] Discrete multi-Gabor expansions
    Li, SD
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (06) : 1954 - 1967
  • [7] Observer-based discrete Gabor transform
    Orszag, Bence
    Sujbert, Laszlo
    2022 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2022), 2022,
  • [8] On equivalent frame conditions for the Gabor expansion
    Lu, YH
    Morris, JM
    SIGNAL PROCESSING, 1996, 49 (02) : 97 - 110
  • [9] DISCRETE GABOR FRAMES IN l2(Zd)
    Lopez, Jerry
    Han, Deguang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (11) : 3839 - 3851
  • [10] Frames, Riesz bases, and discrete Gabor/wavelet expansions
    Christensen, O
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 38 (03) : 273 - 291