Optimising environmental monitoring for carbon dioxide sequestered offshore

被引:10
作者
Cazenave, Pierre William [1 ]
Dewar, Marius [1 ]
Torres, Ricardo [1 ]
Blackford, Jerry [1 ]
Bedington, Michael [1 ]
Artioli, Yuri [1 ]
Bruggeman, Jorn [1 ]
机构
[1] Plymouth Marine Lab PML, Prospect Pl, Plymouth PL1 3DH, Devon, England
基金
美国能源部; 欧盟地平线“2020”; 英国工程与自然科学研究理事会; 英国自然环境研究理事会; 英国科研创新办公室;
关键词
Carbon Capture and Storage; FVCOM; offshore geological storage; monitoring; marine; climate change; CO2; LEAKAGE; CONTINENTAL-SHELF; COASTAL OCEAN; GAS-EXCHANGE; SEA; IMPACTS; SYSTEM; MODEL; WATER; TEMPERATURE;
D O I
10.1016/j.ijggc.2021.103397
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbon Capture and Storage (CCS) provides a mechanism by which CO2 can be removed from the atmosphere and stored in reservoirs. Regulations and stakeholder assurance require monitoring to show storage is robust. The marine environment is heterogeneous and dynamic, and baselines are extremely variable. Hence, distinguishing anomalous CO2 from natural variability is challenging. Monitoring schemes must be designed to identify releases early and with certainty, whilst being cost effective. A key question is how to deploy the smallest number of sensors to ensure effective monitoring? We approached this problem through a 3D hydrodynamic model (FVCOM) coupled to a carbonate system. The unstructured grid resolution ranges from 0.5 km to 3 m and simulates seabed release scenarios ranging from 3 t d-1 to 300 t d-1 using the Goldeneye complex as an exemplar test bed. This configuration allows us to characterise and analyse the fate of CO2 in the water column, with the spatial and temporal CO2 patterns shown to be affected by both tides and seasonal mixing/stratification. A weighted greedy set algorithm is used to identify the positions within the model domain which yield the greatest combined coverage for the smallest number of sampling stations, further limited by selecting only a feasible number of sample sites. The weighted greedy set algorithm incorporates the effect of the variable grid spacing as well as the proximity of the sample locations to the Goldeneye complex. The weighted greedy set can identify releases sooner, with a stronger signal than a regular sampling approach.
引用
收藏
页数:14
相关论文
共 79 条
[11]   Ecosystem dynamics at six contrasting sites: a generic modelling study [J].
Blackford, JC ;
Allen, JI ;
Gilbert, FJ .
JOURNAL OF MARINE SYSTEMS, 2004, 52 (1-4) :191-215
[12]   Planktonic community structure and carbon cycling in the Arabian Sea as a result of monsoonal forcing: the application of a generic model [J].
Blackford, JC ;
Burkill, PH .
JOURNAL OF MARINE SYSTEMS, 2002, 36 (3-4) :239-267
[13]   Impact and detectability of hypothetical CCS offshore seep scenarios as an aid to storage assurance and risk assessment [J].
Blackford, Jerry ;
Alendal, Guttorm ;
Avlesen, Helge ;
Brereton, Ashley ;
Cazenave, Pierre W. ;
Chen, Baixin ;
Dewar, Marius ;
Holt, Jason ;
Phelps, Jack .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2020, 95
[14]   Monitoring of offshore geological carbon storage integrity: Implications of natural variability in the marine system and the assessment of anomaly detection criteria [J].
Blackford, Jerry ;
Artioli, Yuri ;
Clark, James ;
de Mora, Lee .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2017, 64 :99-112
[15]   Marine baseline and monitoring strategies for carbon dioxide capture and storage (CCS) [J].
Blackford, Jerry ;
Bull, Jonathan M. ;
Cevatoglu, Melis ;
Connelly, Douglas ;
Hauton, Chris ;
James, Rachael H. ;
Lichtschlag, Anna ;
Stahl, Henrik ;
Widdicombe, Steve ;
Wright, Ian C. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 38 :221-229
[16]   Wind Speed and Sea State Dependencies of Air-Sea Gas Transfer: Results From the High Wind Speed Gas Exchange Study (HiWinGS) [J].
Blomquist, B. W. ;
Brumer, S. E. ;
Fairall, C. W. ;
Huebert, B. J. ;
Zappa, C. J. ;
Brooks, I. M. ;
Yang, M. ;
Bariteau, L. ;
Prytherch, J. ;
Hare, J. E. ;
Czerski, H. ;
Matei, A. ;
Pascal, R. W. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2017, 122 (10) :8034-8062
[17]   A general framework for aquatic biogeochemical models [J].
Bruggeman, Jorn ;
Bolding, Karsten .
ENVIRONMENTAL MODELLING & SOFTWARE, 2014, 61 :249-265
[18]   ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels [J].
Butenschoen, Momme ;
Clark, James ;
Aldridge, John N. ;
Allen, Julian Icarus ;
Artioli, Yuri ;
Blackford, Jeremy ;
Bruggeman, Jorn ;
Cazenave, Pierre ;
Ciavatta, Stefano ;
Kay, Susan ;
Lessin, Gennadi ;
van Leeuwen, Sonja ;
van der Molen, Johan ;
de Mora, Lee ;
Polimene, Luca ;
Sailley, Sevrine ;
Stephens, Nicholas ;
Torres, Ricardo .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (04) :1293-1339
[19]  
Cazenave P., 2019, **DATA OBJECT**, DOI 10.5281/zenodo.2573959
[20]  
Cazenave P., 2019, **DATA OBJECT**, DOI 10.5281/zenodo.2671617