The regularity of solutions of the primitive equations of the ocean in space dimension three

被引:34
作者
Kukavica, Igor [1 ]
Ziane, Mohammed [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
关键词
LARGE-SCALE OCEAN; ATMOSPHERE;
D O I
10.1016/j.crma.2007.07.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note, the global existence of strong solutions of the primitive equations for the ocean in space dimension 3 with the Dirichlet boundary condition is obtained. The method of the proof can be easily adapted to treat full primitive equations in a domain with a varying bottom topography.
引用
收藏
页码:257 / 260
页数:4
相关论文
共 11 条
[1]  
Bellido MAR., 2001, DIFFERENTIAL INTEGRA, V14, P1381
[2]  
CAO CS, IN PRESS ANN MATH
[3]   Existence of a solution 'in the large' for the 3D large-scale ocean dynamics equations [J].
Kobelkov, Georgij M. .
COMPTES RENDUS MATHEMATIQUE, 2006, 343 (04) :283-286
[4]  
KUKAVICA I, REGULARITY PRIMITIVE
[5]   NEW FORMULATIONS OF THE PRIMITIVE EQUATIONS OF ATMOSPHERE AND APPLICATIONS [J].
LIONS, JL ;
TEMAM, R ;
WANG, SH .
NONLINEARITY, 1992, 5 (02) :237-288
[6]  
LIONS JL, 1995, J MATH PURE APPL, V74, P105
[7]   ON THE EQUATIONS OF THE LARGE-SCALE OCEAN [J].
LIONS, JL ;
TEMAM, R ;
WANG, SH .
NONLINEARITY, 1992, 5 (05) :1007-1053
[8]  
PEEDLOSKY J, 1987, GEOPHYS FLUID DYNAMI
[9]  
SOHR H, 1986, ARCH MATH, V46, P1
[10]  
Temam R, 2004, HANDBOOK OF MATHEMATICAL FLUID DYNAMICS, VOL 3, P535