On critical point for two-dimensional holomorphic systems

被引:1
作者
Valenzuela-Henriquez, Francisco [1 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Inst Matemat, Blanco Viel 596, Valparaiso, Chile
关键词
POLYNOMIAL DIFFEOMORPHISMS; HYPERBOLICITY; ENTROPY; C-2;
D O I
10.1017/etds.2016.2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f: M -> M be a biholomorphism on a two-dimensional complex manifold, and let X subset of M be a compact f -invariant set such that f vertical bar(X) is asymptotically dissipative and without periodic sinks. We introduce a solely dynamical obstruction to dominated splitting, namely critical point. Critical point is a dynamical object and captures many of the dynamical properties of a one-dimensional critical point.
引用
收藏
页码:2276 / 2312
页数:37
相关论文
共 22 条
[1]  
[Anonymous], PUBL MAT
[2]  
[Anonymous], MODERN DYNAMICAL SYS
[3]  
[Anonymous], 1991, J. Amer. Math. Soc.
[4]  
[Anonymous], MULTIPLICATIVE ERGOD
[5]   POLYNOMIAL DIFFEOMORPHISMS OF C-2 .4. THE MEASURE OF MAXIMAL ENTROPY AND LAMINAR CURRENTS [J].
BEDFORD, E ;
LYUBICH, M ;
SMILLIE, J .
INVENTIONES MATHEMATICAE, 1993, 112 (01) :77-125
[6]   POLYNOMIAL DIFFEOMORPHISMS OF C-2 - CURRENTS, EQUILIBRIUM MEASURE AND HYPERBOLICITY [J].
BEDFORD, E ;
SMILLIE, J .
INVENTIONES MATHEMATICAE, 1991, 103 (01) :69-99
[7]   POLYNOMIAL DIFFEOMORPHISMS OF C2 .3. ERGODICITY, EXPONENTS AND ENTROPY OF THE EQUILIBRIUM MEASURE [J].
BEDFORD, E ;
SMILLIE, J .
MATHEMATISCHE ANNALEN, 1992, 294 (03) :395-420
[8]  
Bonatti C., 2005, ENCYCL MATH SCI, V102, pIII
[9]  
Conway J. B., 1978, Graduate Texts in Mathematics, V11
[10]  
Crovisier S., PREPRINT