A Novel Neuraminidase-Dependent Hemagglutinin Cleavage Mechanism Enables the Systemic Spread of an H7N6 Avian Influenza Virus

被引:8
|
作者
Kwon, Hyeok-il [1 ,2 ,4 ]
Kim, Young-Il [1 ,2 ,4 ]
Park, Su-Jin [1 ,2 ,4 ]
Kim, Eun-Ha [1 ,2 ,4 ]
Kim, Semi [1 ,2 ,4 ]
Si, Young-Jae [1 ,2 ,4 ]
Song, Min-Suk [1 ,2 ,4 ]
Pascua, Philippe Noriel Q. [1 ,2 ,3 ]
Govorkova, Elena A. [3 ]
Webster, Robert G. [3 ]
Webby, Richard J. [3 ]
Choi, Young Ki [1 ,2 ,4 ]
机构
[1] Chungbuk Natl Univ, Coll Med, Cheongju, South Korea
[2] Chungbuk Natl Univ, Med Res Inst, Cheongju, South Korea
[3] St Jude Childrens Res Hosp, Dept Infect Dis, Div Virol, 332 N Lauderdale St, Memphis, TN 38105 USA
[4] Chungbuk Natl Univ, Zoonot Infect Dis Res Ctr, Cheongju, South Korea
来源
MBIO | 2019年 / 10卷 / 06期
基金
新加坡国家研究基金会;
关键词
H7; N6; neuraminidase; thrombin-like protease; GRG motif; trypsin-independent growth; influenza; pathogenicity; virulence; A VIRUS; ACTIVATION; EMERGENCE; PROTEIN; DETERMINES; VIRULENCE; H5N1;
D O I
10.1128/mBio.02369-19
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In this study, we demonstrate a novel mechanism for hemagglutinin (HA) activation in a naturally occurring H7N6 avian influenza A virus strain, A/mallard duck/Korea/6L/2007 (A/Mdk/6L/07). This novel mechanism allows for systemic infection of chickens, ducks, and mice, and A/Mdk/6L/07 can replicate in vitro without exogenous trypsin and exhibits broad tissue tropism in animals despite the presence of a monobasic HA cleavage motif (PEIPKGR/G). The trypsin-independent growth phenotype requires the N6 neuraminidase and the specific recognition of glycine at the P2 position of the HA cleavage motif by a thrombin-like protease. Correspondingly, viral growth is significantly attenuated by the addition of a thrombin-like protease inhibitor (argatroban). These data provide evidence for a previously unrecognized virus replication mechanism and support the hypothesis that thrombin-mediated HA cleavage is an important virulence marker and potential therapeutic target for H7 influenza viruses. IMPORTANCE The identification of virulence markers in influenza viruses underpins risk assessment programs and the development of novel therapeutics. The cleavage of the influenza virus HA is a required step in the viral life cycle, and phenotypic differences in viruses can be caused by changes in this process. Here, we describe a novel mechanism for HA cleavage in an H7N6 influenza virus isolated from a mallard duck. The mechanism requires the N6 protein and full activity of thrombin-like proteases and allows the virus to cause systemic infection in chickens, ducks, and mice. The thrombin-mediated cleavage of HA is thus a novel virulence determinant of avian influenza viruses.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A Novel Reassortant Avian H7N6 Influenza Virus Is Transmissible in Guinea Pigs via Respiratory Droplets
    Zhao, Zongzheng
    Liu, Lina
    Guo, Zhendong
    Zhang, Chunmao
    Wang, Zhongyi
    Wen, Guoyuan
    Zhang, Wenting
    Shang, Yu
    Zhang, Tengfei
    Jiao, Zuwu
    Chen, Ligong
    Zhang, Cheng
    Cui, Huan
    Jin, Meilin
    Wang, Chengyu
    Luo, Qingping
    Shao, Huabin
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [2] H7N6 highly pathogenic avian influenza in Mozambique, 2023
    Monjane, Iolanda Vieira Anahory
    Djedje, Hernani
    Tamele, Esmeralda
    Nhabomba, Virginia
    Tivane, Almiro Rogerio
    Massicame, Zacarias Elias
    Arone, Dercilia Mudanisse
    Pastori, Ambra
    Bortolami, Alessio
    Monne, Isabella
    Woma, Timothy
    Lamien, Charles E.
    Dundon, William G.
    EMERGING MICROBES & INFECTIONS, 2024, 13 (01)
  • [3] An outbreak of H7N6 low pathogenic avian influenza in quails in Japan
    Sugiura, Katsuaki
    Fushimi, Keiji
    Takehisa, Tomoyuki
    Miwa, Masuji
    Saito, Takehiko
    Uchida, Yuko
    Onodera, Takashi
    VETERINARIA ITALIANA, 2009, 45 (04) : 481 - 489
  • [4] Molecular characterization of a novel reassortant H7N6 subtype avian influenza virus from poultry in Eastern China, in 2016
    Wu, Haibo
    Lu, Rufeng
    Peng, Xiuming
    Peng, Xiaorong
    Chen, Bin
    Cheng, Linfang
    Wu, Nanping
    ARCHIVES OF VIROLOGY, 2017, 162 (05) : 1341 - 1347
  • [5] Molecular characterization of a novel reassortant H7N6 subtype avian influenza virus from poultry in Eastern China, in 2016
    Haibo Wu
    Rufeng Lu
    Xiuming Peng
    Xiaorong Peng
    Bin Chen
    Linfang Cheng
    Nanping Wu
    Archives of Virology, 2017, 162 : 1341 - 1347
  • [6] Pathogenesis and genetic characteristics of a novel reassortant low pathogenic avian influenza A(H7N6) virus isolated in Cambodia in 2019
    Lee, Yu-Na
    Lee, Dong-Hun
    Shin, Jae-In
    Si, Young-Jae
    Lee, Ji-Ho
    Baek, Yoon-Gi
    Hong, Seo Yun
    Bunnary, Seng
    Tum, Sothyra
    Park, Minji
    Kye, Soo-Jeong
    Lee, Myoung-Heon
    Lee, Youn-Jeong
    TRANSBOUNDARY AND EMERGING DISEASES, 2021, 68 (06) : 3180 - 3186
  • [7] Neuraminidase-associated plasminogen recruitment enables systemic spread of natural avian Influenza viruses H3N1
    Schoen, Jacob
    Breithaupt, Angele
    Hoeper, Dirk
    King, Jacqueline
    Pohlmann, Anne
    Parvin, Rokshana
    Behr, Klaus-Peter
    Schwarz, Bernd-Andreas
    Beer, Martin
    Stech, Juergen
    Harder, Timm
    Grund, Christian
    PLOS PATHOGENS, 2021, 17 (04)
  • [8] Low pathogenic avian influenza (H7N6) virus causing an outbreak in commercial Turkey farms in Chile
    Jimenez-Bluhm, Pedro
    Bravo-Vasquez, Nicolas
    Torchetti, Mia K.
    Killian, Mary L.
    Livingston, Brandi
    Herrera, Jose
    Fuentes, Mauricio
    Schultz-Cherry, Stacey
    Hamilton-West, Christopher
    EMERGING MICROBES & INFECTIONS, 2019, 8 (01) : 479 - 485
  • [9] Spread of predominant neuraminidase and hemagglutinin comutations in the influenza A/H3N2 virus genome
    Chong, Yong
    Ikematsu, Hideyuki
    JOURNAL OF INFECTION AND CHEMOTHERAPY, 2018, 24 (03) : 193 - 198
  • [10] The cleavage of the hemagglutinin protein of H5N2 avian influenza virus in yeast
    Wang, Chi Y.
    Luo, Yu L.
    Chen, Yu T.
    Li, Shu K.
    Lin, Chi H.
    Hsieh, Yao C.
    Liu, Hung J.
    JOURNAL OF VIROLOGICAL METHODS, 2007, 146 (1-2) : 293 - 297