EQUIVALENCE OF GRADIENT FLOWS AND ENTROPY SOLUTIONS FOR SINGULAR NONLOCAL INTERACTION EQUATIONS IN 1D

被引:29
作者
Bonaschi, Giovanni A. [1 ,2 ,3 ]
Carrillo, Jose A. [4 ]
Di Francesco, Marco [5 ]
Peletier, Mark A. [5 ]
机构
[1] Tech Univ Eindhoven, Inst Complex Mol Syst, NL-5600 MB Eindhoven, Netherlands
[2] Tech Univ Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[3] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[4] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[5] Univ Bath, Math Sci, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
Wasserstein gradient flows; nonlocal interaction equations; entropy solutions; scalar conservation laws; particle approximation; STATIONARY STATES; BLOW-UP; AGGREGATION; MODEL; DYNAMICS; SYSTEMS; MASS;
D O I
10.1051/cocv/2014032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove the equivalence between the notion of Wasserstein gradient flow for a one-dimensional nonlocal transport PDE with attractive/repulsive Newtonian potential on one side, and the notion of entropy solution of a Burgers-type scalar conservation law on the other. The solution of the former is obtained by spatially differentiating the solution of the latter. The proof uses an intermediate step, namely the L-2 gradient flow of the pseudo-inverse distribution function of the gradient flow solution. We use this equivalence to provide a rigorous particle-system approximation to the Wasserstein gradient flow, avoiding the regularization effect due to the singularity in the repulsive kernel. The abstract particle method relies on the so-called wave-front-tracking algorithm for scalar conservation laws. Finally, we provide a characterization of the subdifferential of the functional involved in the Wasserstein gradient flow.
引用
收藏
页码:414 / 441
页数:28
相关论文
共 45 条
  • [1] Ambrosio L., 2006, Gradient flows: in metric spaces and in the space of probability measures
  • [2] [Anonymous], 1998, GRADUATE STUD MATH
  • [3] [Anonymous], 2003, TOPICS OPTIMAL TRANS
  • [4] [Anonymous], 1963, TRANSL AM MATH SOC
  • [5] Nonlocal interactions by repulsive-attractive potentials: Radial ins/stability
    Balague, D.
    Carrillo, J. A.
    Laurent, T.
    Raoul, G.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2013, 260 : 5 - 25
  • [6] Dimensionality of Local Minimizers of the Interaction Energy
    Balague, D.
    Carrillo, J. A.
    Laurent, T.
    Raoul, G.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 209 (03) : 1055 - 1088
  • [7] Lp Theory for the Multidimensional Aggregation Equation
    Bertozzi, Andrea L.
    Laurent, Thomas
    Rosado, Jesus
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (01) : 45 - 83
  • [8] Bertozzi AL, 2010, COMMUN MATH SCI, V8, P45
  • [9] The Behavior of Solutions of Multidimensional Aggregation Equations with Mildly Singular Interaction Kernels
    Bertozzi, Andrea L.
    Laurent, Thomas
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2009, 30 (05) : 463 - 482
  • [10] Blow-up in multidimensional aggregation equations with mildly singular interaction kernels
    Bertozzi, Andrea L.
    Carrillo, Jose A.
    Laurent, Thomas
    [J]. NONLINEARITY, 2009, 22 (03) : 683 - 710