EQUIVALENCE OF GRADIENT FLOWS AND ENTROPY SOLUTIONS FOR SINGULAR NONLOCAL INTERACTION EQUATIONS IN 1D

被引:30
作者
Bonaschi, Giovanni A. [1 ,2 ,3 ]
Carrillo, Jose A. [4 ]
Di Francesco, Marco [5 ]
Peletier, Mark A. [5 ]
机构
[1] Tech Univ Eindhoven, Inst Complex Mol Syst, NL-5600 MB Eindhoven, Netherlands
[2] Tech Univ Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[3] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[4] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[5] Univ Bath, Math Sci, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
Wasserstein gradient flows; nonlocal interaction equations; entropy solutions; scalar conservation laws; particle approximation; STATIONARY STATES; BLOW-UP; AGGREGATION; MODEL; DYNAMICS; SYSTEMS; MASS;
D O I
10.1051/cocv/2014032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove the equivalence between the notion of Wasserstein gradient flow for a one-dimensional nonlocal transport PDE with attractive/repulsive Newtonian potential on one side, and the notion of entropy solution of a Burgers-type scalar conservation law on the other. The solution of the former is obtained by spatially differentiating the solution of the latter. The proof uses an intermediate step, namely the L-2 gradient flow of the pseudo-inverse distribution function of the gradient flow solution. We use this equivalence to provide a rigorous particle-system approximation to the Wasserstein gradient flow, avoiding the regularization effect due to the singularity in the repulsive kernel. The abstract particle method relies on the so-called wave-front-tracking algorithm for scalar conservation laws. Finally, we provide a characterization of the subdifferential of the functional involved in the Wasserstein gradient flow.
引用
收藏
页码:414 / 441
页数:28
相关论文
共 45 条
[1]  
Ambrosio L., 2006, Gradient flows: in metric spaces and in the space of probability measures
[2]  
[Anonymous], 1998, GRADUATE STUD MATH
[3]  
[Anonymous], 2003, TOPICS OPTIMAL TRANS
[4]  
[Anonymous], 1963, TRANSL AM MATH SOC
[5]   Nonlocal interactions by repulsive-attractive potentials: Radial ins/stability [J].
Balague, D. ;
Carrillo, J. A. ;
Laurent, T. ;
Raoul, G. .
PHYSICA D-NONLINEAR PHENOMENA, 2013, 260 :5-25
[6]   Dimensionality of Local Minimizers of the Interaction Energy [J].
Balague, D. ;
Carrillo, J. A. ;
Laurent, T. ;
Raoul, G. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 209 (03) :1055-1088
[7]   Lp Theory for the Multidimensional Aggregation Equation [J].
Bertozzi, Andrea L. ;
Laurent, Thomas ;
Rosado, Jesus .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (01) :45-83
[8]  
Bertozzi AL, 2010, COMMUN MATH SCI, V8, P45
[9]   The Behavior of Solutions of Multidimensional Aggregation Equations with Mildly Singular Interaction Kernels [J].
Bertozzi, Andrea L. ;
Laurent, Thomas .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2009, 30 (05) :463-482
[10]   Blow-up in multidimensional aggregation equations with mildly singular interaction kernels [J].
Bertozzi, Andrea L. ;
Carrillo, Jose A. ;
Laurent, Thomas .
NONLINEARITY, 2009, 22 (03) :683-710