Electricity generation from carbon monoxide and syngas in a microbial fuel cell

被引:21
作者
Hussain, Abid [1 ,2 ]
Guiot, Serge R. [1 ]
Mehta, Punita [1 ]
Raghavan, Vijaya [2 ]
Tartakovsky, Boris [1 ]
机构
[1] Natl Res Council Canada, Biotechnol Res Inst, Montreal, PQ H2P 2R2, Canada
[2] McGill Univ, Dept Bioresource Engn, Ste Anne De Bellevue, PQ H9X 3V9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Microbial fuel cell; Syngas; Carbon monoxide; LIQUID MASS-TRANSFER; LOOP AIRLIFT BIOREACTORS; SP-NOV; GEN; NOV; SYNTHESIS-GAS; THERMOPHILIC MICROORGANISMS; CLOSTRIDIUM-THERMOACETICUM; HYDROGENOGENIC BACTERIUM; GEOBACTER-SULFURREDUCENS; DISSIMILATORY FE(III);
D O I
10.1007/s00253-011-3188-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Electricity generation in microbial fuel cells (MFCs) has been a subject of significant research efforts. MFCs employ the ability of electricigenic bacteria to oxidize organic substrates using an electrode as an electron acceptor. While MFC application for electricity production from a variety of organic sources has been demonstrated, very little research on electricity production from carbon monoxide and synthesis gas (syngas) in an MFC has been reported. Although most of the syngas today is produced from non-renewable sources, syngas production from renewable biomass or poorly degradable organic matter makes energy generation from syngas a sustainable process, which combines energy production with the reprocessing of solid wastes. An MFC-based process of syngas conversion to electricity might offer a number of advantages such as high Coulombic efficiency and biocatalytic activity in the presence of carbon monoxide and sulfur components. This paper presents a discussion on microorganisms and reactor designs that can be used for operating an MFC on syngas.
引用
收藏
页码:827 / 836
页数:10
相关论文
共 76 条
  • [51] Genome of Geobacter sulfurreducens:: Metal reduction in subsurface environments
    Methé, BA
    Nelson, KE
    Eisen, JA
    Paulsen, IT
    Nelson, W
    Heidelberg, JF
    Wu, D
    Wu, M
    Ward, N
    Beanan, MJ
    Dodson, RJ
    Madupu, R
    Brinkac, LM
    Daugherty, SC
    DeBoy, RT
    Durkin, AS
    Gwinn, M
    Kolonay, JF
    Sullivan, SA
    Haft, DH
    Selengut, J
    Davidsen, TM
    Zafar, N
    White, O
    Tran, B
    Romero, C
    Forberger, HA
    Weidman, J
    Khouri, H
    Feldblyum, TV
    Utterback, TR
    Van Aken, SE
    Lovley, DR
    Fraser, CM
    [J]. SCIENCE, 2003, 302 (5652) : 1967 - 1969
  • [52] Electricity generation from swine wastewater using microbial fuel cells
    Min, B
    Kim, JR
    Oh, SE
    Regan, JM
    Logan, BE
    [J]. WATER RESEARCH, 2005, 39 (20) : 4961 - 4968
  • [53] Biomass-derived syngas fermentation into biofuels: Opportunities and challenges
    Munasinghe, Pradeep Chaminda
    Khanal, Samir Kumar
    [J]. BIORESOURCE TECHNOLOGY, 2010, 101 (13) : 5013 - 5022
  • [54] Exploiting complex carbohydrates for microbial electricity generation -: a bacterial fuel cell operating on starch
    Niessen, J
    Schröder, U
    Scholz, F
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (09) : 955 - 958
  • [55] Solid oxide fuel cells
    Ormerod, RM
    [J]. CHEMICAL SOCIETY REVIEWS, 2003, 32 (01) : 17 - 28
  • [56] Microbial fuel cells: novel biotechnology for energy generation
    Rabaey, K
    Verstraete, W
    [J]. TRENDS IN BIOTECHNOLOGY, 2005, 23 (06) : 291 - 298
  • [57] Measuring carbon monoxide gas-liquid mass transfer in a stirred tank reactor for syngas fermentation
    Riggs, Seth S.
    Heindel, Theodore J.
    [J]. BIOTECHNOLOGY PROGRESS, 2006, 22 (03) : 903 - 906
  • [58] CARBON MONOXIDE-DEPENDENT CHEMOLITHOTROPHIC GROWTH OF CLOSTRIDIUM-THERMOAUTOTROPHICUM
    SAVAGE, MD
    WU, ZR
    DANIEL, SL
    LUNDIE, LL
    DRAKE, HL
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1987, 53 (08) : 1902 - 1906
  • [59] Schiraldi Chiara, 2010, APPL MICROBIOL BIOT, V87, P1209, DOI [10.1007/s00253-010-2677-1, DOI 10.1007/S00253-010-2677-1]
  • [60] Scott K., 1996, Industrial Membrane Separation Technology