Duality in reverse convex optimization

被引:14
作者
Lemaire, B [1 ]
机构
[1] Univ Montpellier 2, Inst Math, F-34095 Montpellier 05, France
关键词
duality; DC optimization; reverse convex;
D O I
10.1137/S1052623495295857
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A duality theorem for the general problem of minimizing an extended real-valued convex function on a locally convex linear space under a reverse convex constraint is considered. In the particular case of the distance to a reverse convex subset in a normed linear space, we recover as a corollary a duality theorem due to C. Franchetti and I. Singer [Boll. Un. Mat. Ital. B (5), 17 (1980), pp. 33-43] similar to the one known for the distance to a convex subset. The general theorem also contains the duality principle of Toland-Singer for D.C. optimization.
引用
收藏
页码:1029 / 1037
页数:9
相关论文
共 26 条
[1]  
[Anonymous], 1966, FONCTIONNELLES CONVE
[2]  
BRIEC W, IN PRESS EUROPEAN J
[3]  
BRIEC W, 1994, THESIS AIXMARSEILLE
[4]  
Ekeland I., 1976, CONVEX ANAL VARIATIO
[5]  
FENCHEL W, 1953, MULTILITH LECT NOTES
[6]  
FRANCHETTI C, 1980, B UNIONE MAT ITAL, V17, P33
[7]  
Hiriart-Urruty J.B., 1989, Nonsmooth Optimization and Related Topics, V43, DOI [10.1007/978-1-4757-6019-4_13, DOI 10.1007/978-1-4757-6019-4_13]
[8]   HOW TO REGULARIZE A DIFFERENCE OF CONVEX-FUNCTIONS [J].
HIRIARTURRUTY, JB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (01) :196-209
[9]   A GENERAL FORMULA ON THE CONJUGATE OF THE DIFFERENCE OF FUNCTIONS [J].
HIRIARTURRUTY, JB .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1986, 29 (04) :482-485
[10]  
HIRIARTURRUTY JB, 1985, LECT NOTES ECON MATH, V256, P37