The landscape law for the integrated density of states

被引:13
作者
David, G. [1 ]
Filoche, M. [2 ]
Mayboroda, S. [3 ]
机构
[1] Univ Paris Saclay, Lab Math Orsay, F-91405 Orsay, France
[2] Inst Polytech Paris, CNRS, Ecole Polytech, Lab Phys Matiere Condensee, F-91220 Palaiseau, France
[3] Univ Minnesota, Sch Math, 206 Church St SE, Minneapolis, MN 55455 USA
基金
美国国家科学基金会; 欧盟地平线“2020”;
关键词
Integrated density of states; Localization; Weyl law; Landscape; ANDERSON; TAILS; DECAY;
D O I
10.1016/j.aim.2021.107946
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper establishes non-asymptotic estimates from above and below on the integrated density of states of the Schrodinger operator L = -Delta + V, using a counting function for the minima of the localization landscape, a solution to the equation Lu = 1. (c) 2021 Published by Elsevier Inc.
引用
收藏
页数:34
相关论文
共 27 条
[1]  
[Anonymous], 2011, Courant Lecture Notes in Mathematics
[2]   Localization of eigenfunctions via an effective potential [J].
Arnold, Douglas N. ;
David, Guy ;
Filoche, Marcel ;
Jerison, David ;
Mayboroda, Svitlana .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2019, 44 (11) :1186-1216
[3]   COMPUTING SPECTRA WITHOUT SOLVING EIGENVALUE PROBLEMS [J].
Arnold, Douglas N. ;
David, Guy ;
Filoche, Marcel ;
Jerison, David ;
Mayboroda, Svitlana .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01) :B69-B92
[4]   Effective Confining Potential of Quantum States in Disordered Media [J].
Arnold, Douglas N. ;
David, Guy ;
Jerison, David ;
Mayboroda, Svitlana ;
Filoche, Marcel .
PHYSICAL REVIEW LETTERS, 2016, 116 (05)
[5]   Electronic structure of semiconductor nanostructures: A modified localization landscape theory [J].
Chaudhuri, D. ;
Kelleher, J. C. ;
O'Brien, M. R. ;
O'Reilly, E. P. ;
Schulz, S. .
PHYSICAL REVIEW B, 2020, 101 (03)
[6]   Comment on "Effective Confining Potential of Quantum States in Disordered Media" [J].
Comtet, Alain ;
Texier, Christophe .
PHYSICAL REVIEW LETTERS, 2020, 124 (21)
[7]   THE UNCERTAINTY PRINCIPLE [J].
FEFFERMAN, CL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 9 (02) :129-206
[8]  
Filoche M, 2020, PHYS REV LETT, V124, DOI 10.1103/PhysRevLett.124.219702
[9]  
Filoche M., 2020, ARXIV201009287MATHPH
[10]   Localization landscape theory of disorder in semiconductors. I. Theory and modeling [J].
Filoche, Marcel ;
Piccardo, Marco ;
Wu, Yuh-Renn ;
Li, Chi-Kang ;
Weisbuch, Claude ;
Mayboroda, Svitlana .
PHYSICAL REVIEW B, 2017, 95 (14)